Debora Puglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1684567/publications.pdf

Version: 2024-02-01

212 papers 12,076 citations

63 h-index 98 g-index

218 all docs

218 docs citations

times ranked

218

10430 citing authors

#	Article	IF	CITATIONS
1	Polymeric composites and nanocomposites containing lignin. , 2022, , 293-324.		2
2	Lemna minor aqueous extract as a natural ingredient incorporated in poly (vinyl alcohol)-based films for active food packaging systems. Food Packaging and Shelf Life, 2022, 32, 100822.	7.5	6
3	Synthesis of a Lignin/Zinc Oxide Hybrid Nanoparticles System and Its Application by Nano-Priming in Maize. Nanomaterials, 2022, 12, 568.	4.1	14
4	Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics, 2022, 14, 485.	4.5	12
5	Biopolypropylene-Based Wood Plastic Composites Reinforced with Mango Peel Flour and Compatibilized with an Environmentally Friendly Copolymer from Itaconic Acid. ACS Applied Polymer Materials, 2022, 4, 4398-4410.	4.4	7
6	Preparation of toughened poly(lactic acid)-poly($\hat{l}\mu$ -caprolactone)-lignin nanocomposites with good heat- and UV-resistance. Industrial Crops and Products, 2022, 183, 114965.	5.2	16
7	Organic waste valorisation towards circular and sustainable biocomposites. Green Chemistry, 2022, 24, 5429-5459.	9.0	26
8	Sulfonated Fe3O4/PES nanocomposites as efficient separators in microbial fuel cells. Journal of Membrane Science, 2021, 620, 118967.	8.2	16
9	Development of Compatibilized Polyamide 1010/Coconut Fibers Composites by Reactive Extrusion with Modified Linseed Oil and Multi-functional Petroleum Derived Compatibilizers. Fibers and Polymers, 2021, 22, 728-744.	2.1	7
10	Migration and Degradation in Composting Environment of Active Polylactic Acid Bilayer Nanocomposites Films: Combined Role of Umbelliferone, Lignin and Cellulose Nanostructures. Polymers, 2021, 13, 282.	4.5	7
11	Lignin-based materials with antioxidant and antimicrobial properties. , 2021, , 291-326.		3
12	Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits. Nanomaterials, $2021,11,846$.	4.1	32
13	Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics, 2021, 13, 324.	4.5	25
14	Graphene nanoplatelet, multiwall carbon nanotube, and hybrid multiwall carbon nanotube–graphene nanoplatelet epoxy nanocomposites as strain sensing coatings. Journal of Reinforced Plastics and Composites, 2021, 40, 632-643.	3.1	28
15	The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability, 2021, 13, 2710.	3.2	64
16	Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules, 2021, 26, 2104.	3.8	20
17	Highly transparent PVA/nanolignin composite films with excellent UV shielding, antibacterial and antioxidant performance. Reactive and Functional Polymers, 2021, 162, 104873.	4.1	50
18	Fabrication of water-resistant epoxy nanocomposite with improved dynamic mechanical properties and balanced thermal and dimensional stability: Study on dual role of graphene oxide nanosheets and barium oxide microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126405.	4.7	7

#	Article	IF	Citations
19	Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers, 2021, 13, 1966.	4.5	12
20	Enhancing the Radical Scavenging Activity and UV Resistance of Lignin Nanoparticles via Surface Mannich Amination toward a Biobased Antioxidant. Biomacromolecules, 2021, 22, 2693-2701.	5 . 4	60
21	Evaluation of the Factors Affecting the Disintegration under a Composting Process of Poly(lactic) Tj ETQq $1\ 1\ 0$.	784314 rgl 4.5	3T /Overlock
22	Highly-toughened PVA/nanocellulose hydrogels with anti-oxidative and antibacterial properties triggered by lignin-Ag nanoparticles. Materials Science and Engineering C, 2021, 129, 112385.	7.3	33
23	Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 2021, 23, 6698-6760.	9.0	93
24	UV Protective, Antioxidant, Antibacterial and Compostable Polylactic Acid Composites Containing Pristine and Chemically Modified Lignin Nanoparticles. Molecules, 2021, 26, 126.	3.8	51
25	Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59341-59351.	8.0	35
26	Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment. Progress in Organic Coatings, 2020, 138, 105355.	3.9	19
27	Effect of Pretreatment of Nanocomposite PESâ€Fe 3 O 4 Separator on Microbial Fuel Cells Performance. Polymer Engineering and Science, 2020, 60, 371-379.	3.1	7
28	Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. International Journal of Biological Macromolecules, 2020, 144, 102-110.	7.5	119
29	Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index. Progress in Organic Coatings, 2020, 139, 105255.	3.9	10
30	Biocomposites Based on Plasticized Wheat Flours: Effect of Bran Content on Thermomechanical Behavior. Polymers, 2020, 12, 2248.	4.5	7
31	Synergic Effect of Nanolignin and Metal Oxide Nanoparticles into Poly(<scp>l</scp> -lactide) Bionanocomposites: Material Properties, Antioxidant Activity, and Antibacterial Performance. ACS Applied Bio Materials, 2020, 3, 5263-5274.	4.6	52
32	Novel Nanocomposite PLA Films with Lignin/Zinc Oxide Hybrids: Design, Characterization, Interaction with Mesenchymal Stem Cells. Nanomaterials, 2020, 10, 2176.	4.1	24
33	Hydrophobic, UV resistant and dielectric polyurethane-nanolignin composites with good reprocessability. Materials and Design, 2020, 196, 109150.	7.0	33
34	Polymeric Bioadhesive Patch Based on Ketoprofen-Hydrotalcite Hybrid for Local Treatments. Pharmaceutics, 2020, 12, 733.	4.5	9
35	Antioxidant Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Caffeic Acid. Molecules, 2020, 25, 3953.	3.8	26
36	Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers, 2020, 12, 2508.	4.5	9

#	Article	IF	CITATIONS
37	Effect of SWCNT Content and Water Vapor Adsorption on the Electrical Properties of Cellulose Nanocrystal-Based Nanohybrids. Journal of Physical Chemistry C, 2020, 124, 14901-14910.	3.1	6
38	Thermomechanical, antioxidant and moisture behaviour of PVA films in presence of citric acid esterified cellulose nanocrystals. International Journal of Biological Macromolecules, 2020, 161, 617-626.	7.5	39
39	Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films. Polymers, 2020, 12, 1364.	4.5	82
40	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	32.8	113
41	Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on Thermomechanical and Color Properties of Polyester Based Bionanocomposites. Polymers, 2020, 12, 1451.	4.5	11
42	Characterization of Licorice Root Waste for Prospective Use as Filler in more Eco-Friendly Composite Materials. Processes, 2020, 8, 733.	2.8	12
43	Straw fibres from barley hybrid lines and their reinforcement effect in polypropylene based composites. Industrial Crops and Products, 2020, 154, 112736.	5.2	12
44	PBS-Based Green Copolymer as an Efficient Compatibilizer in Thermoplastic Inedible Wheat Flour/Poly(butylene succinate) Blends. Biomacromolecules, 2020, 21, 3254-3269.	5.4	25
45	Improved Toughness in Lignin/Natural Fiber Composites Plasticized with Epoxidized and Maleinized Linseed Oils. Materials, 2020, 13, 600.	2.9	12
46	Thermomechanical and Morphological Properties of Poly(ethylene terephthalate)/Anhydrous Calcium Terephthalate Nanocomposites. Polymers, 2020, 12, 276.	4.5	15
47	Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites. Polymers, 2020, 12, 835.	4.5	18
48	Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Progress in Organic Coatings, 2019, 136, 105218.	3.9	67
49	Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH. Progress in Organic Coatings, 2019, 136, 105228.	3.9	43
50	Biomimetic multifunctional materials: a review. Emergent Materials, 2019, 2, 391-415.	5.7	27
51	Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Progress in Organic Coatings, 2019, 136, 105278.	3.9	31
52	Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Progress in Organic Coatings, 2019, 136, 105264.	3.9	34
53	Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules, 2019, 24, 3113.	3.8	34
54	Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets. Progress in Organic Coatings, 2019, 136, 105217.	3.9	41

#	Article	IF	Citations
55	Extraction of nanostructured starch from purified granules of waxy and non-waxy barley cultivars. Industrial Crops and Products, 2019, 130, 520-527.	5.2	11
56	Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles. International Journal of Biological Macromolecules, 2019, 127, 665-676.	7.5	100
57	Active Role of ZnO Nanorods in Thermomechanical and Barrier Performance of Poly(vinyl) Tj ETQq1 1 0.784314	rgBT/Over	rlock 10 Tf 50
58	Thermal and mechanical behavior of thermoplastic composites reinforced with fibers enzymatically extracted from Ampelodesmos mauritanicus. Polymer Engineering and Science, 2019, 59, 2418-2428.	3.1	8
59	Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Frontiers in Chemistry, 2019, 7, 157.	3.6	38
60	Protocol for nonisothermal cure analysis of thermoset composites. Progress in Organic Coatings, 2019, 131, 333-339.	3.9	87
61	Natural fiber biodegradable composites and nanocomposites. , 2019, , 179-201.		17
62	Bio- and Fossil-Based Polymeric Blends and Nanocomposites for Packaging: Structure–Property Relationship. Materials, 2019, 12, 471.	2.9	113
63	Multifunctional and Environmentally Friendly TiO2–SiO2 Mesoporous Materials for Sustainable Green Buildings. Molecules, 2019, 24, 4226.	3.8	12
64	A Novel Class of Cost Effective and High Performance Composites Based on Terephthalate Salts Reinforced Polyether Ether Ketone. Polymers, 2019, 11, 2097.	4.5	6
65	Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers, 2019, 11, 1999.	4.5	71
66	Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 2019, 209, 20-37.	10.2	89
67	Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydrate Polymers, 2019, 209, 328-337.	10.2	77
68	Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: A comparative study. Materials and Design, 2019, 161, 55-63.	7.0	82
69	Recycling coffee silverskin in sustainable composites based on a poly(butylene) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf 5.2	f 50 187 Td (45
70	Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polymer Degradation and Stability, 2018, 152, 162-176.	5.8	34
71	Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Composites Part A: Applied Science and Manufacturing, 2018, 107, 61-69.	7.6	83
72	Valorization of Acid Isolated High Yield Lignin Nanoparticles as Innovative Antioxidant/Antimicrobial Organic Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 3502-3514.	6.7	214

#	Article	IF	CITATIONS
73	Effect of nanoâ€magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites. Polymer Composites, 2018, 39, E1742.	4.6	11
74	Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. European Polymer Journal, 2018, 99, 222-229.	5.4	61
7 5	Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Progress in Organic Coatings, 2018, 120, 100-109.	3.9	83
76	Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Progress in Organic Coatings, 2018, 119, 194-202.	3.9	83
77	Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers, 2018, 181, 275-284.	10.2	228
78	Cure kinetics of epoxy/chicken eggshell biowaste composites: Isothermal calorimetric and chemorheological analyses. Progress in Organic Coatings, 2018, 114, 208-215.	3.9	49
79	Life Cycle Analysis of Extruded Films Based on Poly(lactic acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems. Journal of Polymers and the Environment, 2018, 26, 1891-1902.	5.0	13
80	Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 2018, 10, 1256.	4.5	36
81	Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behavior. Progress in Organic Coatings, 2018, 125, 384-392.	3.9	77
82	Enhancement of paperboard performance as packaging material by layering with plasticized polyhydroxybutyrate/nanocellulose coatings. Journal of Applied Polymer Science, 2018, 135, 46872.	2.6	24
83	Structure-property relationships of thermoset nanocomposites. , 2018, , 231-276.		6
84	Curing behavior of epoxy/Fe3O4 nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Progress in Organic Coatings, 2018, 123, 10-19.	3.9	89
85	Study of paperboard material layered with plasticized polyhydroxybutyrate/nanocellulose coatings for packaging application. AIP Conference Proceedings, 2018, , .	0.4	2
86	Nanocomposites Based on Biodegradable Polymers. Materials, 2018, 11, 795.	2.9	83
87	Citric Acid as Green Modifier for Tuned Hydrophilicity of Surface Modified Cellulose and Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 9966-9978.	6.7	72
88	Influence of gallic acid and umbelliferone on structural and functional properties of poly(vinyl) Tj ETQq0 0 0 rgB1	Γ/Overlock	≀ 10 Tf 50 142
89	Bio-Based Nanocomposites in Food Packaging. , 2018, , 71-110.		19
90	Lignocellulosic Based Bionanocomposites for Different Industrial Applications. Current Organic Chemistry, 2018, 22, 1205-1221.	1.6	8

#	Article	IF	CITATIONS
91	The role of clay modifier on cure characteristics and properties of epoxy/clay/carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) hybrid. Materials Technology, 2017, 32, 171-177.	3.0	19
92	Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures, 2017, 167, 20-29.	5.8	51
93	Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels. RSC Advances, 2017, 7, 2218-2230.	3.6	55
94	Relationships between wheat flour baking properties and tensile characteristics of derived thermoplastic films. Industrial Crops and Products, 2017, 100, 138-145.	5.2	11
95	To What Extent Can Hyperelastic Models Make Sense the Effect of Clay Surface Treatment on the Mechanical Properties of Elastomeric Nanocomposites?. Macromolecular Materials and Engineering, 2017, 302, 1700036.	3.6	16
96	PLA Nanocomposites Reinforced with Cellulose Nanocrystals from <i>Posidonia oceanica</i> and ZnO Nanoparticles for Packaging Application. Journal of Renewable Materials, 2017, 5, 103-115.	2.2	34
97	Cure kinetics of epoxy/MWCNTs nanocomposites: Isothermal calorimetric and rheological analyses. Progress in Organic Coatings, 2017, 108, 75-83.	3.9	60
98	Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of †micro†and †nano†sca Materials Science and Engineering Reports, 2017, 116, 1-29.	le. 31.8	99
99	Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films. Carbohydrate Polymers, 2017, 157, 1557-1567.	10.2	39
100	Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites. Progress in Organic Coatings, 2017, 112, 176-186.	3.9	56
101	8 Injection moulding of plant fibre composites. , 2017, , 420-439.		3
102	Melt processing and mechanical property characterization of high-performance poly(ether ether) Tj ETQq0 0 0 rgB	T ₃ /Overloc	:k 10 Tf 50 :
103	In Focus International Conference on Nanostructured Polymers and Nanocomposites (ECNP). Polymer International, 2017, 66, 1689-1689.	3.1	O
104	Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites. Green Energy and Technology, 2017, , 125-147.	0.6	5
105	Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl) Tj ETQq1 1 0.784	1314 rgBT 4.1	/ <mark>Q</mark> verlock 1
106	Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 2017, 10, 809.	2.9	55
107	Effect of Cellulose Nanocrystals and Bacterial Cellulose on Disintegrability in Composting Conditions of Plasticized PHB Nanocomposites. Polymers, 2017, 9, 561.	4.5	39
108	Multifunctional antimicrobial nanocomposites for food packaging applications., 2017,, 265-303.		9

#	Article	IF	CITATIONS
109	Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of N,N'-Diallyl-phenylphosphoricdiamide Modified Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 423-434.	2.2	6
110	Cure Kinetics of Epoxy/Rubber Polymer Blends. , 2017, , 211-237.		1
111	Extraction of Lignocellulosic Materials From Waste Products. , 2016, , 1-38.		10
112	Preparation and characterization of polybutyleneâ€succinate/poly(ethyleneâ€glycol)/cellulose nanocrystals ternary composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	28
113	Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from <i>Posidonia oceanica</i> Leaves. Journal of Renewable Materials, 2016, 4, 190-198.	2.2	21
114	Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells (CBS)/Polycaprolactone-Based Composites. Journal of Renewable Materials, 2016, 4, 199-205.	2.2	15
115	Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 2016, 79, 1-12.	5.4	212
116	Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 2016, 80, 295-316.	5.4	80
117	Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 2016, 89, 360-368.	7.5	161
118	Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 2016, 94, 800-811.	5.2	307
119	Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Materials and Design, 2016, 110, 475-484.	7.0	27
120	Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Industrial Crops and Products, 2016, 92, 201-217.	5.2	79
121	CTAB modified dellite: A novel support for enzyme immobilization in bio-based electrochemical detection and its in vitro antimicrobial activity. Sensors and Actuators B: Chemical, 2016, 235, 46-55.	7.8	14
122	Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers, 2016, 149, 357-368.	10.2	94
123	Development and characterization of bionanocomposites based on poly(3â€hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polymer International, 2016, 65, 1046-1053.	3.1	47
124	Tensile Behavior of Thermoplastic Films from Wheat Flours as Function of Raw Material Baking Properties. Journal of Polymers and the Environment, 2016, 24, 37-47.	5.0	16
125	Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 2016, 93, 276-289.	5.2	186
126	Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay. Journal of Polymers and the Environment, 2016, 24, 12-22.	5.0	14

#	Article	IF	CITATIONS
127	Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites. Advances in Polymer Technology, 2016, 35, .	1.7	6
128	Effect of processing techniques on the 3 <scp>D</scp> microstructure of poly (<scp>l</scp> â€lactic) Tj ETQq0 0 Science, 2015, 132, .	0 rgBT /O 2.6	verlock 10 T 14
129	Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Industrial Crops and Products, 2015, 74, 348-356.	5.2	174
130	Cure Kinetics of Epoxy/Rubber Polymer Blends. , 2015, , 1-27.		0
131	Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Industrial Crops and Products, 2015, 67, 439-447.	5.2	165
132	Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering C, 2015, 47, 394-406.	7.3	42
133	Effect of different lignocellulosic fibres on poly($\hat{l}\mu$ -caprolactone)-based composites for potential applications in orthotics. RSC Advances, 2015, 5, 23798-23809.	3.6	31
134	Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. European Polymer Journal, 2015, 71, 126-139.	5.4	150
135	Tensile and fatigue characterisation of textile cotton waste/polypropylene laminates. Composites Part B: Engineering, 2015, 81, 84-90.	12.0	37
136	Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin–diamino diphenyl methane nanostructured blend systems. Physical Chemistry Chemical Physics, 2015, 17, 12760-12770.	2.8	28
137	Liquid-rubber-modified epoxy/clay nanocomposites: effect of dispersion methods on morphology and ultimate properties. Polymer Bulletin, 2015, 72, 1703-1722.	3.3	26
138	Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Advances, 2015, 5, 32350-32357.	3.6	69
139	Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 2015, 121, 105-115.	5.8	95
140	Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Industrial Crops and Products, 2015, 77, 833-844.	5.2	84
141	Preparation of Alginate/Graphene Oxide Hybrid Films and Their Integration in Triboelectric Generators. European Journal of Inorganic Chemistry, 2015, 2015, 1192-1197.	2.0	25
142	Mechanical and thermal properties of epoxy/silicon carbide nanofiber composites. Polymers for Advanced Technologies, 2015, 26, 142-146.	3.2	21
143	Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Composites Part B: Engineering, 2015, 69, 507-515.	12.0	135
144	Revalorisation of Posidonia Oceanica as Reinforcement in Polyethylene/Maleic Anhydride Grafted Polyethylene Composites. Journal of Renewable Materials, 2014, 2, 66-76.	2.2	27

#	Article	IF	Citations
145	Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Industrial Crops and Products, 2014, 56, 175-186.	5.2	90
146	Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 2014, 56, 77-91.	5.4	159
147	Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 2014, 99, 127-135.	5.8	45
148	Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: Morphology, thermal properties and mechanical behavior. Carbohydrate Polymers, 2014, 103, 22-31.	10.2	114
149	An Armadillo-Like Flexible Thermal Protection System for Inflatable Decelerators: A Novel Paradigm. Macromolecular Materials and Engineering, 2014, 299, 379-390.	3.6	6
150	Thermal and mechanical characterisation of <i>Phormium tenax</i> -reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 2014, 27, 1493-1503.	4.2	18
151	Okra Fibres as Potential Reinforcement in Biocomposites. , 2014, , 175-190.		5
152	Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties. Composites Science and Technology, 2014, 102, 65-73.	7.8	36
153	Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering Reports, 2014, 85, 1-46.	31.8	190
154	Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. Journal of Materials Science, 2014, 49, 6257-6269.	3.7	48
155	Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 2014, 55, 3720-3728.	3.8	168
156	Reaction-Induced Phase Separation and Thermomechanical Properties in Epoxidized Styrene- <i>block</i> blockstyrene Triblock Copolymer Modified Epoxy/DDM System. Industrial & Description Chemistry Research, 2014, 53, 6941-6950.	3.7	54
157	Inclusion of PLLA nanoparticles in thermosensitive semi-interpenetrating polymer networks. Polymer Degradation and Stability, 2014, 108, 280-287.	5.8	7
158	Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 2013, 21, 881-891.	5.0	22
159	Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment, 2013, 21, 319-328.	5.0	98
160	Okra (Abelmoschus esculentus) Fibre Based PLA Composites: Mechanical Behaviour and Biodegradation. Journal of Polymers and the Environment, 2013, 21, 726-737.	5.0	49
161	Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fibers and Polymers, 2013, 14, 423-427.	2.1	57
162	Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter, 2013, 9, 2899.	2.7	96

#	Article	IF	Citations
163	The relationship between nanosilica dispersion degree and the tensile properties of polyurethane nanocomposites. Colloid and Polymer Science, 2013, 291, 2745-2753.	2.1	8
164	EPDM based heat shielding materials for Solid Rocket Motors: AÂcomparative study of different fibrous reinforcements. Polymer Degradation and Stability, 2013, 98, 2131-2139.	5.8	83
165	Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polymer Degradation and Stability, 2013, 98, 2742-2751.	5.8	42
166	The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Composites Science and Technology, 2013, 80, 73-79.	7.8	95
167	Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Materials & Design, 2013, 49, 728-735.	5.1	154
168	Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Composites Part A: Applied Science and Manufacturing, 2013, 46, 166-172.	7.6	143
169	Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydrate Polymers, 2013, 97, 825-836.	10.2	169
170	Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: Part II. Carbohydrate Polymers, 2013, 97, 837-848.	10.2	53
171	Morphological and Mechanical Characterization of Nanostructured Thermosets from Epoxy and Styrene- <i>block</i> -Styrene Triblock Copolymer. Industrial & Discrete Engineering Chemistry Research, 2013, 52, 9121-9129.	3.7	55
172	Methods for Improving the Integration of Functionalized Carbon Nanotubes in Polymers. RSC Nanoscience and Nanotechnology, 2013, , 234-252.	0.2	2
173	Clay nanostructure and its localisation in an epoxy/liquid rubber blend. RSC Advances, 2013, 3, 24634.	3.6	31
174	Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science, 2013, 128, 3220-3230.	2.6	130
175	Photoluminescence from doped silicon nanocrystals in SiO <inf>2</inf> matrix. , 2013, , .		2
176	Mechanical and thermal properties of crab chitin reinforced carboxylated SBR composites. EXPRESS Polymer Letters, 2012, 6, 396-409.	2.1	17
177	Ablative properties of carbon black and MWNT/phenolic composites: A comparative study. Composites Part A: Applied Science and Manufacturing, 2012, 43, 174-182.	7.6	143
178	Cure kinetics of a highly reactive silica–polyurethane nanocomposite. Thermochimica Acta, 2012, 549, 172-178.	2.7	18
179	Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 2012, 97, 2027-2036.	5.8	193
180	Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styreneâ€ <i>block</i> â€butadieneâ€ <i>block</i> ê\$tyrene triblock copolymer systems. Polymer Engineering and Science, 2012, 52, 2336-2347.	3.1	37

#	Article	IF	CITATIONS
181	Biodegradation of <i>Phormium tenax</i> /poly(lactic acid) composites. Journal of Applied Polymer Science, 2012, 125, E562.	2.6	44
182	Effect of nanoclay and carboxyl-terminated (butadiene-co-acrylonitrile) (CTBN) rubber on the reaction induced phase separation and cure kinetics of an epoxy/cyclic anhydride system. Journal of Materials Science, 2012, 47, 5241-5253.	3.7	44
183	Poly(Îμ-caprolactone) reinforced with fibres of Poly(methyl methacrylate) loaded with multiwall carbon nanotubes or graphene nanoplatelets. Chemical Engineering Journal, 2012, 195-196, 140-148.	12.7	37
184	Epoxy–carbon nanotube composites. , 2011, , 230-261.		1
185	Effect of carbon nanofibers on the cure kinetics of unsaturated polyester resin: Thermal and chemorheological modelling. Composites Science and Technology, 2011, 71, 1507-1507.	7.8	38
186	Effect of carbon black nanoparticle intrinsic properties on the self-monitoring performance of glass fibre reinforced composite rods. Composites Science and Technology, 2011, 71, 1-8.	7.8	38
187	Poly(lactic acid)/ <i>Phormium tenax</i> composites: Morphology and thermoâ€mechanical behavior. Polymer Composites, 2011, 32, 1362-1368.	4.6	35
188	Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus) Tj ETQq0 0 0 rgBT	19.gerlock	10 Jf 50 46
189	Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 2010, 70, 116-122.	7.8	447
190	Dynamic mechanical properties of oil palm microfibrilâ€reinforced natural rubber composites. Journal of Applied Polymer Science, 2010, 117, 1298-1308.	2.6	57
191	Oil palm microcomposites: Processing and mechanical behavior. Polymer Engineering and Science, 2010, 50, 1853-1863.	3.1	18
192	Dynamic mechanical analysis of oil palm microfibril-reinforced acrylonitrile butadiene rubber composites. Polymer Composites, 2009, 31, NA-NA.	4.6	11
193	Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Composites Science and Technology, 2008, 68, 1008-1014.	7.8	56
194	Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(dl-lactide-co-glycolide)/CNT films. Journal of Materials Science: Materials in Medicine, 2008, 19, 2377-2387.	3.6	73
195	Influence of Clay Modification on the Properties of Resol Nanocomposites. Macromolecular Materials and Engineering, 2008, 293, 878-886.	3.6	21
196	Polypropylene-natural fibre composites. Analysis of fibre structure modification during compounding and its influence on the final properties. Composite Interfaces, 2008, 15, 111-129.	2.3	32
197	Structure-properties relationship in resol/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2007, 104, 3082-3089.	2.6	25
198	Effect of magnetic nanoparticles on the thermal properties of some hydrogels. Polymer Degradation and Stability, 2007, 92, 2198-2205.	5.8	45

#	Article	IF	Citations
199	Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chemical Physics Letters, 2005, 403, 385-389.	2.6	92
200	Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. Journal of Applied Physics, 2005, 97, 114320.	2.5	17
201	Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion. Journal of Composite Materials, 2005, 39, 265-282.	2.4	98
202	A Review on Natural Fibre-Based Compositesâ€"Part II. Journal of Natural Fibers, 2005, 1, 23-65.	3.1	301
203	Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites. Composites Science and Technology, 2004, 64, 23-33.	7.8	81
204	A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composites, 2004, 25, 470-479.	4.6	115
205	A deeper understanding of the photodesorption mechanism of aligned carbon nanotube thin films by impedance spectroscopy. Thin Solid Films, 2004, 449, 105-112.	1.8	17
206	Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy. Carbon, 2004, 42, 323-329.	10.3	72
207	A Review on Natural Fibre-Based Composites-Part I. Journal of Natural Fibers, 2004, 1, 37-68.	3.1	298
208	Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. Journal of Applied Polymer Science, 2003, 88, 452-458.	2.6	137
209	Processing, properties and stability of biodegradable composites based on Mater-Bi \hat{A}^{\otimes} and cellulose fibres. Polymers for Advanced Technologies, 2003, 14, 749-756.	3.2	68
210	Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy. Diamond and Related Materials, 2003, 12, 827-832.	3.9	118
211	Light Scattering Study of Vitrification during the Polymerization of Model Epoxy Resins. Macromolecules, 2003, 36, 5271-5278.	4.8	25
212	Thermal degradation and fire resistance of epoxy–amine–phenolic blends. Polymer Degradation and Stability, 2001, 73, 521-527.	5. 8	44