Joshua Bongard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1684223/publications.pdf

Version: 2024-02-01

933447 996975 1,402 18 10 15 citations g-index h-index papers 20 20 20 1177 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Editorial: Introduction to the 2020 Conference on Artificial Life Special Issue. Artificial Life, 2022, 27, 141-142.	1.3	O
2	Towards enduring autonomous robots via embodied energy. Nature, 2022, 602, 393-402.	27.8	84
3	Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 2022, 4, 196-210.	16.0	62
4	A soft robot that adapts to environments through shape change. Nature Machine Intelligence, 2021, 3, 51-59.	16.0	91
5	Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials, 2021, 33, e2002882.	21.0	66
6	A cellular platform for the development of synthetic living machines. Science Robotics, 2021, 6, .	17.6	86
7	Shapeâ€Changing Robots: Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization (Adv. Mater. 19/2021). Advanced Materials, 2021, 33, 2170150.	21.0	2
8	Kinematic self-replication in reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	57
9	A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1853-1859.	7.1	255
10	Machine behaviour. Nature, 2019, 568, 477-486.	27.8	536
11	A crowdsourcing approach to understand weight and weight loss in men. Preventive Medicine Reports, 2019, 13, 224-228.	1.8	1
12	How morphological development can guide evolution. Scientific Reports, 2018, 8, 13934.	3.3	44
13	Scalable co-optimization of morphology and control in embodied machines. Journal of the Royal Society Interface, 2018, 15, 20170937.	3.4	51
14	Participation and Contribution in Crowdsourced Surveys. PLoS ONE, 2015, 10, e0120521.	2.5	6
15	Avoiding local optima with user demonstrations and low-level control. , 2013, , .		6
16	Active Learning with Adaptive Heterogeneous Ensembles. , 2009, , .		10
17	Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard, and Dieter Fox. (2005, MIT Press.) 647 pages. Artificial Life, 2008, 14, 227-229.	1.3	8
18	Automated Shapeshifting for Function Recovery in Damaged Robots., 0,,.		31