Mark Rees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683712/publications.pdf Version: 2024-02-01

MADE REES

#	Article	IF	CITATIONS
1	Disparities among crop species in the evolution of growth rates: the role of distinct origins and domestication histories. New Phytologist, 2022, 233, 995-1010.	7.3	8
2	Fertile Crescent crop progenitors gained a competitive advantage from large seedlings. Ecology and Evolution, 2021, 11, 3300-3312.	1.9	7
3	Large seeds provide an intrinsic growth advantage that depends on leaf traits and root allocation. Functional Ecology, 2021, 35, 2168-2178.	3.6	9
4	The morphogenesis of fast growth in plants. New Phytologist, 2020, 228, 1306-1315.	7.3	3
5	C ₄ photosynthesis and the economic spectra of leaf and root traits independently influence growth rates in grasses. Journal of Ecology, 2020, 108, 1899-1909.	4.0	20
6	Severe effects of long-term drought on calcareous grassland seed banks. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	74
7	Cereal progenitors differ in stand harvest characteristics from related wild grasses. Journal of Ecology, 2018, 106, 1286-1297.	4.0	11
8	Strong responses from weakly interacting species. Ecology Letters, 2018, 21, 1845-1852.	6.4	20
9	Exploring population responses to environmental change when there is never enough data: a factor analytic approach. Methods in Ecology and Evolution, 2018, 9, 2283-2293.	5.2	7
10	The triangular seed mass–leaf area relationship holds for annual plants and is determined by habitat productivity. Functional Ecology, 2017, 31, 1770-1779.	3.6	16
11	Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Functional Ecology, 2017, 31, 2108-2117.	3.6	35
12	How did the domestication of Fertile Crescent grain crops increase their yields?. Functional Ecology, 2017, 31, 387-397.	3.6	93
13	Data-driven Modelling of Structured Populations. Lecture Notes on Mathematical Modelling in the Life Sciences, 2016, , .	0.4	170
14	C4 photosynthesis boosts growth by altering physiology, allocation and size. Nature Plants, 2016, 2, 16038.	9.3	81
15	How can we make plants grow faster? A source–sink perspective on growth rate. Journal of Experimental Botany, 2016, 67, 31-45.	4.8	228
16	Long-term nitrogen deposition depletes grassland seed banks. Nature Communications, 2015, 6, 6185.	12.8	76
17	Were Fertile Crescent crop progenitors higher yielding than other wild species that were never domesticated?. New Phytologist, 2015, 207, 905-913.	7.3	26
18	Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 2015, 6, 1007-1017.	5.2	31

Mark Rees

#	Article	IF	CITATIONS
19	The effect of soil pH on persistence of seeds of grassland species in soil. Plant Ecology, 2015, 216, 1163-1175.	1.6	31
20	Functional Traits Differ between Cereal Crop Progenitors and Other Wild Grasses Gathered in the Neolithic Fertile Crescent. PLoS ONE, 2014, 9, e87586.	2.5	41
21	Competition on productivity gradients – what do we expect?. Ecology Letters, 2013, 16, 291-298.	6.4	37
22	Does seed mass drive the differences in relative growth rate between growth forms?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130921.	2.6	19
23	Plant growth rates and seed size: a reâ€evaluation. Ecology, 2012, 93, 1283-1289.	3.2	54
24	A nonâ€ŧargeted metabolomics approach to quantifying differences in root storage between fast―and slowâ€growing plants. New Phytologist, 2012, 196, 200-211.	7.3	28
25	Ecophysiological traits in C ₃ and C ₄ grasses: a phylogenetically controlled screening experiment. New Phytologist, 2010, 185, 780-791.	7.3	196
26	A new method for measuring relative growth rate can uncover the costs of defensive compounds in <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 187, 1102-1111.	7.3	74
27	Partitioning the Components of Relative Growth Rate: How Important Is Plant Size Variation?. American Naturalist, 2010, 176, E152-E161.	2.1	114
28	Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3055-3064.	2.6	322
29	The costs and benefits of fast living. Ecology Letters, 2009, 12, 1379-1384.	6.4	64
30	Integral projection models for populations in temporally varying environments. Ecological Monographs, 2009, 79, 575-594.	5.4	139
31	How spatial structure alters population and community dynamics in a natural plant community. Journal of Ecology, 2007, 95, 79-89.	4.0	54
32	Seed Dormancy and Delayed Flowering in Monocarpic Plants: Selective Interactions in a Stochastic Environment. American Naturalist, 2006, 168, E53-E71.	2.1	76
33	Evolution of size–dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 425-434.	2.6	90
34	Evolution of size-dependent flowering in a variable environment: partitioning the effects of fluctuating selection. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 471-475.	2.6	46
35	Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. Journal of Ecology, 2004, 92, 97-109.	4.0	153
36	Modelling integrated weed management of an invasive shrub in tropical Australia. Journal of Applied Ecology, 2004, 41, 547-560.	4.0	90

Mark Rees

#	Article	IF	CITATIONS
37	Demography and management of the invasive plant species Hypericum perforatum. I. Using multi-level mixed-effects models for characterizing growth, survival and fecundity in a long-term data set. Journal of Applied Ecology, 2003, 40, 481-493.	4.0	93
38	Demography and management of the invasive plant species Hypericum perforatum. II. Construction and use of an individual-based model to predict population dynamics and the effects of management strategies. Journal of Applied Ecology, 2003, 40, 494-507.	4.0	67
39	ARE INVASIVES BIGGER? A GLOBAL STUDY OF SEED SIZE VARIATION IN TWO INVASIVE SHRUBS. Ecology, 2003, 84, 1434-1440.	3.2	89
40	Evolution of complex flowering strategies: an age– and size–structured integral projection model. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1829-1838.	2.6	87
41	Snow Tussocks, Chaos, and the Evolution of Mast Seeding. American Naturalist, 2002, 160, 44-59.	2.1	135
42	Evolution of flowering strategies in Oenothera glazioviana : an integral projection model approach. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1509-1515.	2.6	66
43	Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. Journal of Applied Ecology, 2002, 39, 721-734.	4.0	89
44	Title is missing!. Plant Ecology, 2002, 163, 23-38.	1.6	27
45	Seed mass and the competition/colonization trade-off: a sowing experiment. Journal of Ecology, 1999, 87, 899-912.	4.0	381
46	IDENTIFYING AGGREGATION AND ASSOCIATION IN FULLY MAPPED SPATIAL DATA. Ecology, 1999, 80, 554-565.	3.2	59
47	Models Suggesting Field Experiments to Test Two Hypotheses Explaining Successional Diversity. American Naturalist, 1998, 152, 729-737.	2.1	223
48	Asymmetric Light Competition and Founder Control in Plant Communities. Journal of Theoretical Biology, 1997, 184, 353-358.	1.7	34
49	Quantifying the Impact of Competition and Spatial Heterogeneity on the Structure and Dynamics of a Four-Species Guild of Winter Annuals. American Naturalist, 1996, 147, 1-32.	2.1	200
50	Community Structure in Sand Dune Annuals: Is Seed Weight a Key Quantity?. Journal of Ecology, 1995, 83, 857.	4.0	154
51	Trade-offs among dispersal strategies in British plants. Nature, 1993, 366, 150-152.	27.8	187
52	The effect of established plants on recruitment in the annual forb Sinapis arvensis. Oecologia, 1991, 87, 58-62.	2.0	20
53	Seed Dormancy. , 0. , 214-238.		24