Abigail L S Swann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683283/publications.pdf Version: 2024-02-01

ARICALL S SWANN

#	Article	IF	CITATIONS
1	Past Variance and Future Projections of the Environmental Conditions Driving Western U.S. Summertime Wildfire Burn Area. Earth's Future, 2021, 9, e2020EF001645.	6.3	30
2	Leaf Trait Plasticity Alters Competitive Ability and Functioning of Simulated Tropical Trees in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles, 2021, 35, e2020GB006807.	4.9	6
3	Radiative feedbacks on land surface change and associated tropical precipitation shifts. Journal of Climate, 2021, , 1-63.	3.2	6
4	Response of Tropical Rainfall to Reduced Evapotranspiration Depends on Continental Extent. Journal of Climate, 2021, 34, 9221-9234.	3.2	5
5	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	2.2	24
6	Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences, 2020, 17, 3017-3044.	3.3	82
7	Evaporative Resistance is of Equal Importance as Surface Albedo in High‣atitude Surface Temperatures Due to Cloud Feedbacks. Geophysical Research Letters, 2020, 47, e2019GL085663.	4.0	5
8	Advances in understanding largeâ€scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 2020, 1472, 49-75.	3.8	226
9	Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO2 in CMIP6 Earth System Models. Journal of Climate, 2020, 33, 8561-8578.	3.2	20
10	Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System. Journal of Climate, 2019, 32, 5725-5744.	3.2	50
11	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description. Geoscientific Model Development, 2019, 12, 4309-4346.	3.6	62
12	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America. Geoscientific Model Development, 2019, 12, 4347-4374.	3.6	29
13	Maize yield under a changing climate: The hidden role of vapor pressure deficit. Agricultural and Forest Meteorology, 2019, 279, 107692.	4.8	44
14	Plants and Drought in a Changing Climate. Current Climate Change Reports, 2018, 4, 192-201.	8.6	66
15	Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nature Climate Change, 2018, 8, 434-440.	18.8	80
16	Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4093-4098.	7.1	179
17	Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles, 2018, 32, 1437-1448.	4.9	26
18	Plant Physiological Responses to Rising CO ₂ Modify Simulated Daily Runoff Intensity With Implications for Global cale Flood Risk Assessment. Geophysical Research Letters, 2018, 45, 12,457.	4.0	23

Abigail L S Swann

#	Article	IF	CITATIONS
19	Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most. Environmental Research Letters, 2018, 13, 055014.	5.2	39
20	Sensitivity of Leaf Area to Interannual Climate Variation as a Diagnostic of Ecosystem Function in CMIP5 Carbon Cycle Models. Journal of Climate, 2018, 31, 8607-8625.	3.2	8
21	Prototype campaign assessment of disturbanceâ€induced tree loss effects on surface properties for atmospheric modeling. Ecosphere, 2017, 8, e01698.	2.2	5
22	Empirically Derived Sensitivity of Vegetation to Climate across Global Gradients of Temperature and Precipitation. Journal of Climate, 2017, 30, 5835-5849.	3.2	31
23	ISS observations offer insights into plant function. Nature Ecology and Evolution, 2017, 1, 194.	7.8	94
24	A Direct Estimate of the Seasonal Cycle of Evapotranspiration over the Amazon Basin. Journal of Hydrometeorology, 2017, 18, 2173-2185.	1.9	48
25	Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses. PLoS ONE, 2016, 11, e0165042.	2.5	39
26	Progressive Midlatitude Afforestation: Impacts on Clouds, Global Energy Transport, and Precipitation. Journal of Climate, 2016, 29, 5561-5573.	3.2	35
27	Plant responses to increasing CO ₂ reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10019-10024.	7.1	399
28	Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecology, 2016, 31, 181-194.	4.2	53
29	Future deforestation in the Amazon and consequences for South American climate. Agricultural and Forest Meteorology, 2015, 214-215, 12-24.	4.8	100
30	Remote Vegetation Feedbacks and the Mid-Holocene Green Sahara. Journal of Climate, 2014, 27, 4857-4870.	3.2	51
31	Mid-latitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 712-716.	7.1	219
32	Climatic Consequences of Afforestation. , 2011, , .		1
33	Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1295-1300.	7.1	228
34	Sensitivity of stable water isotopic values to convective parameterization schemes. Geophysical Research Letters, 2009, 36, .	4.0	53