
Jason Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682761/publications.pdf Version: 2024-02-01

LASON RUEV

#	Article	IF	CITATIONS
1	Boosting the Efficiency of Photoelectrolysis by the Addition of Non-Noble Plasmonic Metals: Al & Cu. Nanomaterials, 2019, 9, 1.	4.1	376
2	Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film. Advanced Materials, 2005, 17, 2477-2481.	21.0	329
3	Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B, 2006, 110, 15186-15192.	2.6	269
4	Band-Edge Tuning in Self-Assembled Layers of Bi2S3Nanoparticles Used To Photosensitize Nanocrystalline TiO2. Journal of Physical Chemistry B, 2003, 107, 8378-8381.	2.6	264
5	Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chemical Communications, 2002, , 1030-1031.	4.1	236
6	Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters, 2006, 431, 352-357.	2.6	231
7	The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films, 2007, 515, 8679-8683.	1.8	183
8	Photoelectrochemical properties of chemically exfoliated MoS2. Journal of Materials Chemistry A, 2013, 1, 8935.	10.3	137
9	Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes. Biosensors and Bioelectronics, 2005, 21, 217-222.	10.1	110
10	Templated Electrosynthesis of Zinc Oxide Nanorods. Chemistry of Materials, 2006, 18, 2233-2237.	6.7	101
11	Templated electrosynthesis of nanomaterials and porous structures. Journal of Colloid and Interface Science, 2008, 323, 203-212.	9.4	101
12	A Variable Optical Attenuator Operating in the Near-Infrared Region Based on an Electrochromic Molybdenum Complex. Chemistry of Materials, 2000, 12, 2523-2524.	6.7	91
13	Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. Journal of Materials Chemistry, 2011, 21, 2381-2386.	6.7	90
14	A novel cation-binding TiO2 nanotube substrate for electro- and bioelectro-catalysis. Electrochemistry Communications, 2005, 7, 1050-1058.	4.7	89
15	The rectenna device: From theory to practice (a review). MRS Energy & Sustainability, 2014, 1, 1.	3.0	83
16	Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Research, 2013, 6, 496-510.	10.4	78
17	Photoelectrochemical Studies of CdS Nanoparticle Modified Electrodes:Â Absorption and Photocurrent Investigations. Journal of Physical Chemistry B, 2000, 104, 7623-7626.	2.6	72
18	Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation. Journal of Materials Chemistry, 2011, 21, 12949.	6.7	70

#	Article	IF	CITATIONS
19	Voltammetry at C60-modified electrodes. Journal of Electroanalytical Chemistry, 1993, 344, 235-247.	3.8	69
20	Lead acid battery recycling for the twenty-first century. Royal Society Open Science, 2018, 5, 171368.	2.4	65
21	Pd Ionâ€Exchange and Ammonia Etching of a Prussian Blue Analogue to Produce a Highâ€Performance Waterâ€6plitting Catalyst. Advanced Functional Materials, 2021, 31, 2008989.	14.9	65
22	Photoelectrochemical Studies of CdS Nanoparticle-Modified Electrodes. Journal of Physical Chemistry B, 1999, 103, 4599-4602.	2.6	63
23	Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chemistry, 2016, 18, 2946-2955.	9.0	62
24	Linear-scaling time-dependent density-functional theory in the linear response formalism. Journal of Chemical Physics, 2013, 139, 064104.	3.0	59
25	Colloidal bismuth sulfide nanoparticles: a photoelectrochemical study of the relationship between bandgap and particle size. Journal of Materials Chemistry, 2004, 14, 704.	6.7	55
26	Profiting from nature: macroporous copper with superior mechanical properties. Chemical Communications, 2007, , 3547.	4.1	53
27	Preparation of tin dioxide nanotubes via electrosynthesis in a template. Journal of Materials Chemistry, 2006, 16, 2843-2845.	6.7	52
28	Electrodeposition of ZnO Nanostructures on Molecular Thin Films. Chemistry of Materials, 2011, 23, 3863-3870.	6.7	51
29	Electrochemistry in nanoparticle science. Current Opinion in Colloid and Interface Science, 2002, 7, 186-192.	7.4	48
30	Anodic Transformation of a Coreâ€6hell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2106835.	14.9	47
31	Impedance studies of boron-doped CVD diamond electrodes. Diamond and Related Materials, 2000, 9, 1181-1183.	3.9	46
32	Nonlinear analysis of a classical system: The double $\hat{a}\in A$ ayer capacitor. Electrochemistry Communications, 2011, 13, 1077-1081.	4.7	46
33	Au nanostructures by colloidal lithography: from quenching to extensive fluorescence enhancement. Journal of Materials Chemistry B, 2013, 1, 536-543.	5.8	44
34	The Influence of Doping Levels and Surface Termination on the Electrochemistry of Polycrystalline Diamond. Electroanalysis, 2004, 16, 434-441.	2.9	42
35	In situ monitoring of internal surface area during the growth of porous silicon. Applied Physics Letters, 1995, 66, 2355-2357.	3.3	41
36	Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent. Electrochimica Acta, 2002, 47, 2589-2595.	5.2	36

#	Article	IF	CITATIONS
37	A Selfâ€Reconstructed Bifunctional Electrocatalyst of Pseudoâ€Amorphous Nickel Carbide @ Iron Oxide Network for Seawater Splitting. Advanced Science, 2022, 9, e2200146.	11.2	35
38	An in-vitro study of the sterilization of titanium dental implants using low intensity UV-radiation. Dental Materials, 2005, 21, 756-760.	3.5	34
39	Hydrothermal Growth of ZnO Nanorods Aligned Parallel to the Substrate Surface. Journal of Physical Chemistry C, 2008, 112, 9234-9239.	3.1	34
40	Importance of QD Purification Procedure on Surface Adsorbance of QDs and Performance of QD Sensitized Photoanodes. Journal of Physical Chemistry C, 2012, 116, 3349-3355.	3.1	31
41	Broadband plasmon photocurrent generation from Au nanoparticles/ mesoporous TiO2 nanotube electrodes. Solar Energy Materials and Solar Cells, 2015, 138, 80-85.	6.2	31
42	Analysis of anisotropic electron spin polarization in the photosynthetic bacterium Rhodospirillum rubrum Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1141, 221-230.	1.0	30
43	Dandelion-shaped TiO ₂ /multi-layer graphene composed of TiO ₂ (B) fibrils and anatase TiO ₂ pappi utilizing triphase boundaries for lithium storage. Journal of Materials Chemistry A, 2016, 4, 8762-8768.	10.3	29
44	Mechanisms of luminescence tuning and quenching in porous silicon. Thin Solid Films, 1996, 276, 123-129.	1.8	28
45	Intensity modulated photocurrent spectroscopy studies of CdS nanoparticle modified electrodes. Electrochimica Acta, 2000, 45, 3277-3282.	5.2	28
46	Tuning the Double Layer of Graphene Oxide through Phosphorus Doping for Enhanced Supercapacitance. ACS Energy Letters, 2017, 2, 1144-1149.	17.4	28
47	CdS nanoparticle-modified electrodes for photoelectrochemical studies. Chemical Communications, 1999, , 67-68.	4.1	27
48	Electron Hopping Across Heminâ€Doped Serum Albumin Mats on Centimeterâ€Length Scales. Advanced Materials, 2017, 29, 1700810.	21.0	26
49	An electrochemical and ellipsometric study of oxide growth on silicon during anodic etching in fluoride solutions. Electrochimica Acta, 1998, 43, 1757-1772.	5.2	24
50	Nonlinear analysis of a classical system: The Faradaic process. Electrochimica Acta, 2013, 94, 206-213.	5.2	24
51	Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes. Scientific Reports, 2016, 6, 23364.	3.3	23
52	Co3O4 hollow nanospheres doped with ZnCo2O4 via thermal vapor mechanism for fast lithium storage. Energy Storage Materials, 2018, 14, 324-334.	18.0	23
53	Synthesis of ZnO nanorod/nanotube arrays formed by hydrothermal growth at a constant zinc ion concentration. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2351-2354.	1.8	22
54	Tunable synthesis of ordered Zinc Oxide nanoflower-like arrays. Journal of Colloid and Interface Science, 2013, 395, 85-90.	9.4	22

#	Article	IF	CITATIONS
55	Enhancing Distorted Metal–Organic Framework-Derived ZnO as Anode Material for Lithium Storage by the Addition of Ag ₂ S Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 37823-37831.	8.0	20
56	Sorption of inorganic nanoparticles in woven cellulose fabrics. Particuology, 2009, 7, 121-128.	3.6	19
57	Methods to fabricate nanocontacts for electrical addressing of single molecules. Sensors and Actuators B: Chemical, 2005, 105, 542-548.	7.8	18
58	Spectrofluorimetric Hydrodynamic Voltammetry: Investigation of Reactions at Solid/Liquid Interfaces. The Journal of Physical Chemistry, 1994, 98, 6818-6825.	2.9	16
59	The influence of surface preparation on the electrochemistry of boron doped diamond: A study of the reduction of 1,4-benzoquinone in acetonitrile. Electrochemistry Communications, 2002, 4, 218-221.	4.7	16
60	Investigation of the Processes of Electron Injection during Dissolution of p-Si in Acidic Fluoride and Alkaline Media. Journal of Physical Chemistry B, 1997, 101, 4071-4076.	2.6	14
61	Poly(1,1-bis(dialkylamino)propan-1,3-diyl)s; conformationally-controlled oligomers bearing electroactive groups. Organic and Biomolecular Chemistry, 2009, 7, 2704.	2.8	14
62	Using Metal Cation to Control the Microstructure of Cobalt Oxide in Energy Conversion and Storage Applications. Small, 2022, 18, e2106391.	10.0	14
63	On the mechanism of the voltage tuning of photoluminescence and electroluminescence in porous silicon. Journal of Electroanalytical Chemistry, 1995, 392, 97-100.	3.8	13
64	Underpotential deposition of copper on electrodes modified with colloidal gold. Electrochemistry Communications, 1999, 1, 116-118.	4.7	13
65	Preparation, characterization and electrochemical properties of Nafion® doped poly(ortho-anisidine) Langmuir–Schaefer films. Electrochemistry Communications, 2003, 5, 787-792.	4.7	13
66	A mechanistic study on templated electrodeposition of one-dimensional TiO 2 nanorods and nanotubes using TiOSO 4 as a precursor. Electrochemistry Communications, 2014, 47, 13-16.	4.7	12
67	Potential modulated absorbance spectroscopy: an investigation of the potential distribution at a CdS nanoparticle modified electrode. Journal of Electroanalytical Chemistry, 2001, 504, 45-51.	3.8	11
68	Bispecific Antibody-Mediated Detection of theStaphylococcus aureusThermonuclease. Analytical Chemistry, 2012, 84, 5876-5884.	6.5	11
69	pH induced swelling of PVP microgel particles – A first order phase transition?. Journal of Colloid and Interface Science, 2012, 370, 67-72.	9.4	11
70	A study of CdS nanoparticle surface states by potential-modulated sub-bandgap spectroscopy. Journal of Electroanalytical Chemistry, 2004, 569, 271-274.	3.8	10
71	A simple route to Ohmic contacts on low boron-doped CVD diamond. Diamond and Related Materials, 2003, 12, 1460-1462.	3.9	9
72	Examining the charging behaviour of nickel hydroxide nanomaterials. Electrochemistry Communications, 2019, 101, 47-51.	4.7	9

#	Article	IF	CITATIONS
73	An in-situ method of monitoring the surface area of porous silicon. Thin Solid Films, 1996, 276, 61-64.	1.8	8
74	Potential induced tuning of the luminescence of porous silicon: A simultaneous study of electroluminescence and photoluminescence emission. Electrochemistry Communications, 2000, 2, 461-465.	4.7	8
75	Millisecond time resolution neutron reflection from a nematic liquid crystal. Review of Scientific Instruments, 2004, 75, 2955-2959.	1.3	7
76	The effect of perchlorate ions on a pyridine-based microgel. Advances in Colloid and Interface Science, 2009, 147-148, 67-73.	14.7	7
77	Is Nickel Hydroxide Charging Only Skin-Deep?. ACS Applied Energy Materials, 2020, 3, 2803-2810.	5.1	7
78	Electrochemical Quartz Crystal Microbalance in a Channel Flow Cell:  A Study of Copper Dissolution. Journal of Physical Chemistry C, 2007, 111, 3669-3674.	3.1	6
79	Electron spin polarization in photosynthetic bacteria. Anisotropic chemical reactivity. Research on Chemical Intermediates, 1991, 16, 127-139.	2.7	5
80	Charge in Colloidal Systems. , 0, , 14-35.		5
81	Electrical switching of microgel swelling and collapse for display applications. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 516-522.	2.1	5
82	Influence of Stress on Aluminum Anodization and Pore Ordering. Journal of the Electrochemical Society, 2013, 160, D10-D12.	2.9	5
83	Langmuir-blodgett films of doxyl-stearic acids: Cyclic voltammetry. Electroanalysis, 1991, 3, 757-762.	2.9	4
84	Formation of MUA (mercaptoundeconic acid)-capped CDSe nanoparticle films by electrophoretic deposition. Ceramics International, 2013, 39, 8797-8803.	4.8	3
85	Activation of CdSe Quantum Dots after Exposure to Polysulfide. Journal of Physical Chemistry C, 2014, 118, 14555-14561.	3.1	3
86	Mechanism of Actuation in Nickel Hydroxide/Oxyhydroxide Photoactuators. Advanced Materials Interfaces, 0, , 2101072.	3.7	3
87	The Computer Aided Design and Experimental Development of a New Device for the Measurement of Electrochemiluminescence. Electroanalysis, 2000, 12, 503-508.	2.9	2
88	Synthesis of various shapes of titanate nanoparticles via hydrothermal reaction. , 2012, , .		0
89	Anodic Electrophoretic Deposition of TiO ₂ Nanoparticles Synthesized Using Sol Gel Method. Advanced Materials Research, 2013, 832, 633-638.	0.3	0