
Sarah L Gaffen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682365/publications.pdf Version: 2024-02-01

SADAH L CAFEEN

#	Article	IF	CITATIONS
1	IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity, 2022, 55, 237-253.e8.	6.6	30
2	Regnase-1 Deficiency Restrains Klebsiella pneumoniae Infection by Regulation of a Type I Interferon Response. MBio, 2022, 13, e0379221.	1.8	2
3	The RNA-binding protein IMP2 drives a stromal-Th17 cell circuit in autoimmune neuroinflammation. JCI Insight, 2022, 7, .	2.3	10
4	Fungi make fun guys. Cell Host and Microbe, 2022, 30, 277-278.	5.1	2
5	Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host and Microbe, 2022, 30, 530-544.e6.	5.1	21
6	The <i>Candida albicans</i> toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Science Signaling, 2022, 15, eabj6915.	1.6	17
7	The metabolism-modulating activity of IL-17 signaling in health and disease. Journal of Experimental Medicine, 2021, 218, .	4.2	34
8	Local Sustained Delivery of Anti–IL-17A Antibodies Limits Inflammatory Bone Loss in Murine Experimental Periodontitis. Journal of Immunology, 2021, 206, 2386-2392.	0.4	13
9	The m ⁶ A reader IMP2 directs autoimmune inflammation through an IL-17– and TNFα-dependent C/EBP transcription factor axis. Science Immunology, 2021, 6, .	5.6	43
10	RTEC-intrinsic IL-17–driven inflammatory circuit amplifies antibody-induced glomerulonephritis and is constrained by Regnase-1. JCI Insight, 2021, 6, .	2.3	4
11	Infections in the monogenic autoimmune syndrome APECED. Current Opinion in Immunology, 2021, 72, 286-297.	2.4	15
12	Divergent functions of IL-17-family cytokines in DSS colitis: Insights from a naturally-occurring human mutation in IL-17F. Cytokine, 2021, 148, 155715.	1.4	10
13	â€~(m6)A' stands for â€~autoimmunity': reading, writing, and erasing RNA modifications during inflammation. Trends in Immunology, 2021, 42, 1073-1076.	2.9	5
14	The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. MBio, 2021, 12, e0271621.	1.8	13
15	The Interleukin (IL) 17R/IL-22R Signaling Axis Is Dispensable for Vulvovaginal Candidiasis Regardless of Estrogen Status. Journal of Infectious Diseases, 2020, 221, 1554-1563.	1.9	33
16	Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Science Immunology, 2020, 5, .	5.6	123
17	Oral epithelial IL-22/STAT3 signaling licenses IL-17–mediated immunity to oral mucosal candidiasis. Science Immunology, 2020, 5, .	5.6	66
18	Restoring glucose uptake rescues neutrophil dysfunction and protects against systemic fungal infection in mouse models of kidney disease. Science Translational Medicine, 2020, 12, .	5.8	22

#	Article	IF	CITATIONS
19	An IL-17F.S65L Knock-In Mouse Reveals Similarities and Differences in IL-17F Function in Oral Candidiasis: A New Tool to Understand IL-17F. Journal of Immunology, 2020, 205, 720-730.	0.4	10
20	Candidalysin: discovery and function in Candida albicans infections. Current Opinion in Microbiology, 2019, 52, 100-109.	2.3	134
21	Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nature Communications, 2019, 10, 2297.	5.8	104
22	Fungus Among Us: The Frenemies Within. Trends in Immunology, 2019, 40, 469-471.	2.9	3
23	The IL-17 Family of Cytokines in Health and Disease. Immunity, 2019, 50, 892-906.	6.6	773
24	IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nature Immunology, 2019, 20, 534-545.	7.0	63
25	Dermatophyte Immune Memory Is Only Skin-Deep. Journal of Investigative Dermatology, 2019, 139, 517-519.	0.3	7
26	Combined Blockade of TNF-α and IL-17A Alleviates Progression of Collagen-Induced Arthritis without Causing Serious Infections in Mice. Journal of Immunology, 2019, 202, 2017-2026.	0.4	22
27	IL-17 receptor–based signaling and implications for disease. Nature Immunology, 2019, 20, 1594-1602.	7.0	271
28	Interleukin-22 (IL-22) Binding Protein Constrains IL-22 Activity, Host Defense, and Oxidative Phosphorylation Genes during Pneumococcal Pneumonia. Infection and Immunity, 2019, 87, .	1.0	16
29	Processing of <i>Candida albicans</i> Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. MBio, 2018, 9, .	1.8	72
30	Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028522.	2.3	226
31	ILâ€⊋2 neutralizing autoantibodies impair fungal clearance in murine oropharyngeal candidiasis model. European Journal of Immunology, 2018, 48, 464-470.	1.6	24
32	IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Science Signaling, 2018, 11, .	1.6	52
33	T Cell Receptor-Independent, CD31/IL-17A-Driven Inflammatory Axis Shapes Synovitis in Juvenile Idiopathic Arthritis. Frontiers in Immunology, 2018, 9, 1802.	2.2	13
34	IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. Journal of Immunology, 2018, 201, 627-634.	0.4	69
35	CCAAT/Enhancer-binding protein \hat{I}^2 promotes pathogenesis of EAE. Cytokine, 2017, 92, 24-32.	1.4	52
36	IL-17 Signaling: The Yin and the Yang. Trends in Immunology, 2017, 38, 310-322.	2.9	493

#	Article	IF	CITATIONS
37	The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio, 2017, 8, .	1.8	50
38	Follistatinâ€like protein 1 modulates ILâ€17 signaling via ILâ€17RC regulation in stromal cells. Immunology and Cell Biology, 2017, 95, 656-665.	1.0	11
39	MCPIP1/Regnase-1 Restricts IL-17A– and IL-17C–Dependent Skin Inflammation. Journal of Immunology, 2017, 198, 767-775.	0.4	65
40	Candida albicans–epithelial interactions and induction of mucosal innate immunity. Current Opinion in Microbiology, 2017, 40, 104-112.	2.3	104
41	Oral epithelial cells orchestrate innate type 17 responses to <i>Candida albicans</i> through the virulence factor candidalysin. Science Immunology, 2017, 2, .	5.6	154
42	Innate Immunity to Mucosal Candida Infections. Journal of Fungi (Basel, Switzerland), 2017, 3, 60.	1.5	51
43	IL-17 Signaling Triggers Degradation of the Constitutive NF-κB Inhibitor ABIN-1. ImmunoHorizons, 2017, 1, 133-141.	0.8	16
44	Editorial: Fake it 'til you make it: mast cells acquire IL-17 exogenously. Journal of Leukocyte Biology, 2016, 100, 445-446.	1.5	3
45	IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host and Microbe, 2016, 20, 606-617.	5.1	148
46	IL-17 Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against K.Apneumoniae. Cell Host and Microbe, 2016, 20, 596-605.	5.1	115
47	Update on Gender Equity in Immunology, 2001 to 2016. Journal of Immunology, 2016, 197, 3751-3753.	0.4	2
48	Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. Journal of Leukocyte Biology, 2016, 99, 1153-1164.	1.5	52
49	IL-17 receptor composition. Nature Reviews Immunology, 2016, 16, 4-4.	10.6	18
50	The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney. PLoS Pathogens, 2016, 12, e1005952.	2.1	32
51	Neutrophils Do Not Express IL-17A in the Context of Acute Oropharyngeal Candidiasis. Pathogens, 2015, 4, 559-572.	1.2	25
52	IL-17–Mediated Immunity to the Opportunistic Fungal Pathogen <i>Candida albicans</i> . Journal of Immunology, 2015, 195, 780-788.	0.4	224
53	Integrating p38α MAPK immune signals in nonimmune cells. Science Signaling, 2015, 8, fs5.	1.6	6
54	Gut-Busters: IL-17 Ain't Afraid of No IL-23. Immunity, 2015, 43, 620-622.	6.6	51

#	Article	IF	CITATIONS
55	Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine, 2015, 76, 42-52.	1.4	39
56	A Candida albicans Strain Expressing Mammalian Interleukin-17A Results in Early Control of Fungal Growth during Disseminated Infection. Infection and Immunity, 2015, 83, 3684-3692.	1.0	4
57	MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity, 2015, 43, 475-487.	6.6	125
58	Delinking CARD9 and IL-17: CARD9 Protects against <i>Candida tropicalis</i> Infection through a TNF-α–Dependent, IL-17–Independent Mechanism. Journal of Immunology, 2015, 195, 3781-3792.	0.4	38
59	ID: 154. Cytokine, 2015, 76, 64-65.	1.4	1
60	Innate Defense against Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019620.	2.9	74
61	Signaling through IL-17C/IL-17RE Is Dispensable for Immunity to Systemic, Oral and Cutaneous Candidiasis. PLoS ONE, 2015, 10, e0122807.	1.1	50
62	C/EBPβ Promotes Immunity to Oral Candidiasis through Regulation of β-Defensins. PLoS ONE, 2015, 10, e0136538.	1.1	18
63	Brothers in Arms: Th17 and Treg Responses in Candida albicans Immunity. PLoS Pathogens, 2014, 10, e1004456.	2.1	44
64	The Adaptor CARD9 Is Required for Adaptive but Not Innate Immunity to Oral Mucosal Candida albicans Infections. Infection and Immunity, 2014, 82, 1173-1180.	1.0	57
65	An essential role of interleukin-17 receptor signaling in the development of autoimmune glomerulonephritis. Journal of Leukocyte Biology, 2014, 96, 463-472.	1.5	40
66	Role of Neutrophils in IL-17–Dependent Immunity to Mucosal Candidiasis. Journal of Immunology, 2014, 192, 1745-1752.	0.4	104
67	Expansion of Foxp3 ⁺ Tâ€cell populations by <i>Candida albicans</i> enhances both Th17â€cell responses and fungal dissemination after intravenous challenge. European Journal of Immunology, 2014, 44, 1069-1083.	1.6	55
68	Interleukin-17-Induced Protein Lipocalin 2 Is Dispensable for Immunity to Oral Candidiasis. Infection and Immunity, 2014, 82, 1030-1035.	1.0	64
69	Animal Models for Candidiasis. Current Protocols in Immunology, 2014, 105, 19.6.1-19.6.17.	3.6	86
70	The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nature Reviews Immunology, 2014, 14, 585-600.	10.6	1,267
71	Oral-resident natural Th17 cells and γδT cells control opportunistic <i>Candida albicans</i> infections. Journal of Experimental Medicine, 2014, 211, 2075-2084.	4.2	217
72	Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses. Arthritis Research and Therapy, 2014, 16, R50.	1.6	26

#	Article	IF	CITATIONS
73	IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Krüppel-like factors. Cytokine, 2013, 61, 898-905.	1.4	70
74	The Deubiquitinase A20 Mediates Feedback Inhibition of Interleukin-17 Receptor Signaling. Science Signaling, 2013, 6, ra44.	1.6	117
75	A Competitive Infection Model of Hematogenously Disseminated Candidiasis in Mice Redefines the Role of Candida albicans IRS4 in Pathogenesis. Infection and Immunity, 2013, 81, 1430-1438.	1.0	9
76	IL-17 signaling and A20. Cell Cycle, 2013, 12, 3459-3460.	1.3	12
77	The Anaphase-Promoting Complex Protein 5 (AnapC5) Associates with A20 and Inhibits IL-17-Mediated Signal Transduction. PLoS ONE, 2013, 8, e70168.	1.1	16
78	Mucocutaneous candidiasis: the IL-17 pathway and implications for targeted immunotherapy. Arthritis Research and Therapy, 2012, 14, 217.	1.6	118
79	Th17 Cells in Immunity to Candida albicans. Cell Host and Microbe, 2012, 11, 425-435.	5.1	286
80	Recent advances in the IL-17 cytokine family. Current Opinion in Immunology, 2011, 23, 613-619.	2.4	247
81	IL-17 signaling in host defense against Candida albicans. Immunologic Research, 2011, 50, 181-187.	1.3	104
82	CD4+CD25+Foxp3+ Regulatory T Cells Promote Th17 Cells InÂVitro and Enhance Host Resistance in Mouse Candida albicans Th17 Cell Infection Model. Immunity, 2011, 34, 422-434.	6.6	244
83	1,25-Dihydroxyvitamin D ₃ Ameliorates Th17 Autoimmunity via Transcriptional Modulation of Interleukin-17A. Molecular and Cellular Biology, 2011, 31, 3653-3669.	1.1	420
84	Life before Seventeen: Cloning of the IL-17 Receptor. Journal of Immunology, 2011, 187, 4389-4391.	0.4	18
85	TLR2 Signaling and Th2 Responses Drive <i>Tannerella forsythia</i> -Induced Periodontal Bone Loss. Journal of Immunology, 2011, 187, 501-509.	0.4	39
86	IL-17RC: a partner in IL-17 signaling and beyond. Seminars in Immunopathology, 2010, 32, 33-42.	2.8	83
87	Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes and Infection, 2010, 12, 518-527.	1.0	121
88	Interleukinâ€17 and its target genes: mechanisms of interleukinâ€17 function in disease. Immunology, 2010, 129, 311-321.	2.0	738
89	NADPH Oxidase Limits Innate Immune Responses in the Lungs in Mice. PLoS ONE, 2010, 5, e9631.	1.1	161
90	IL-17RC Is Required for Immune Signaling via an Extended SEF/IL-17R Signaling Domain in the Cytoplasmic Tail. Journal of Immunology, 2010, 185, 1063-1070.	0.4	114

#	Article	IF	CITATIONS
91	SEF/IL-17R (SEFIR) Is Not Enough. Journal of Biological Chemistry, 2010, 285, 32751-32759.	1.6	50
92	IL-17 in obesity and adipogenesis. Cytokine and Growth Factor Reviews, 2010, 21, 449-453.	3.2	148
93	Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. Journal of Experimental Medicine, 2009, 206, 299-311.	4.2	878
94	Differential Role for c-Rel and C/EBPβ/δ in TLR-Mediated Induction of Proinflammatory Cytokines. Journal of Immunology, 2009, 182, 7212-7221.	0.4	94
95	Development of Allergen-Induced Airway Inflammation in the Absence of T-bet Regulation Is Dependent on IL-17. Journal of Immunology, 2009, 183, 5293-5300.	0.4	43
96	IL-17 Receptor Signaling Inhibits C/EBPβ by Sequential Phosphorylation of the Regulatory 2 Domain. Science Signaling, 2009, 2, ra8.	1.6	118
97	A boneâ€protective role for ILâ€17 receptor signaling in ovariectomyâ€induced bone loss. European Journal of Immunology, 2009, 39, 2831-2839.	1.6	71
98	The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Current Rheumatology Reports, 2009, 11, 365-370.	2.1	178
99	Structure and signalling in the IL-17 receptor family. Nature Reviews Immunology, 2009, 9, 556-567.	10.6	1,207
100	Interleukin-17 Is Required for T Helper 1 Cell Immunity and Host Resistance to the Intracellular Pathogen Francisella tularensis. Immunity, 2009, 31, 799-810.	6.6	255
101	Structure–function relationships in the IL-17 receptor: Implications for signal transduction and therapy. Cytokine, 2008, 41, 92-104.	1.4	225
102	An overview of IL-17 function and signaling. Cytokine, 2008, 43, 402-407.	1.4	295
103	The Interleukin-17 Receptor Plays a Gender-Dependent Role in Host Protection against <i>Porphyromonas gingivalis</i> -Induced Periodontal Bone Loss. Infection and Immunity, 2008, 76, 4206-4213.	1.0	73
104	Differential Regulation of the IL-17 Receptor by γc Cytokines. Journal of Biological Chemistry, 2008, 283, 14100-14108.	1.6	35
105	IL-17 and the Th17 lineage in systemic lupus erythematosus. Current Opinion in Rheumatology, 2008, 20, 519-525.	2.0	128
106	Subunit Dynamics in the ILâ€17 Receptor Complex: Identification of a Preâ€ligand Assembly Domain (PLAD) and Ligand Binding site in ILâ€17RA. FASEB Journal, 2008, 22, 1069.1.	0.2	0
107	Cutting Edge: Identification of a Pre-Ligand Assembly Domain (PLAD) and Ligand Binding Site in the IL-17 Receptor. Journal of Immunology, 2007, 179, 6379-6383.	0.4	45
108	CARMA1 Coiled-coil Domain Is Involved in the Oligomerization and Subcellular Localization of CARMA1 and Is Required for T Cell Receptor-induced NF-κB Activation. Journal of Biological Chemistry, 2007, 282, 17141-17147.	1.6	53

#	Article	IF	CITATIONS
109	Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7506-7511.	3.3	137
110	An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor–dependent signals. Blood, 2007, 109, 3794-3802.	0.6	306
111	Interleukin-17: A New Paradigm in Inflammation, Autoimmunity, and Therapy. Journal of Periodontology, 2007, 78, 1083-1093.	1.7	124
112	IL-17F, a target for anti-cytokine therapy. Expert Opinion on Therapeutic Patents, 2007, 17, 453-458.	2.4	0
113	IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology, 2007, 8, 369-377.	7.0	1,253
114	Cutting Edge: Evidence for Ligand-Independent Multimerization of the IL-17 Receptor. Journal of Immunology, 2006, 176, 711-715.	0.4	99
115	Identification of Common Transcriptional Regulatory Elements in Interleukin-17 Target Genes. Journal of Biological Chemistry, 2006, 281, 24138-24148.	1.6	264
116	The ILâ€17 Cytokine Family. Vitamins and Hormones, 2006, 74, 255-282.	0.7	118
117	Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. Journal of Leukocyte Biology, 2005, 77, 388-399.	1.5	240
118	Functional Cooperation between Interleukin-17 and Tumor Necrosis Factor-α Is Mediated by CCAAT/Enhancer-binding Protein Family Members. Journal of Biological Chemistry, 2004, 279, 2559-2567.	1.6	309
119	Crucial Role for Nuclear Factor of Activated T Cells in T Cell Receptor-mediated Regulation of Human Interleukin-17. Journal of Biological Chemistry, 2004, 279, 52762-52771.	1.6	148
120	CD3/CD28 Costimulation-Induced NF-κB Activation Is Mediated by Recruitment of Protein Kinase C-Î, Bcl10, and IκB Kinase β to the Immunological Synapse through CARMA1. Molecular and Cellular Biology, 2004, 24, 164-171.	1.1	206
121	Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment. Journal of Leukocyte Biology, 2004, 76, 135-144.	1.5	174
122	Biology of recently discovered cytokines: interleukin-17–a unique inflammatory cytokine with roles in bone biology and arthritis. Arthritis Research, 2004, 6, 240.	2.0	107
123	Overview of interleukin-2 function, production and clinical applications. Cytokine, 2004, 28, 109-123.	1.4	367
124	Anti-apoptotic Signaling by the Interleukin-2 Receptor Reveals a Function for Cytoplasmic Tyrosine Residues within the Common γ (γc) Receptor Subunit. Journal of Biological Chemistry, 2003, 278, 10239-10249.	1.6	25
125	SIGNALING DOMAINS OF THE INTERLEUKIN 2 RECEPTOR. Cytokine, 2001, 14, 63-77.	1.4	170
126	V3 Recombinants Indicate a Central Role for CCR5 as a Coreceptor in Tissue Infection by Human Immunodeficiency Virus Type 1. Journal of Virology, 1999, 73, 2350-2358.	1.5	75

#	Article	IF	CITATIONS
127	JAK/STAT signaling by cytokine receptors. Current Opinion in Immunology, 1998, 10, 271-278.	2.4	216
128	Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Current Biology, 1997, 7, 817-826.	1.8	88
129	EXPRESSION OF THE IMMUNOGLOBULIN J CHAIN IN A MURINE B LYMPHOMA IS DRIVEN BY AUTOCRINE PRODUCTION OF INTERLEUKIN 2. Cytokine, 1996, 8, 513-524.	1.4	14
130	Distinct Tyrosine Residues within the Interleukin-2 Receptor Î ² Chain Drive Signal Transduction Specificity, Redundancy, and Diversity. Journal of Biological Chemistry, 1996, 271, 21381-21390.	1.6	69