Chawnshang Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1681947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Androgen Receptor in Prostate Cancer. Endocrine Reviews, 2004, 25, 276-308.	20.1	1,475
2	Androgen Receptor (AR) Coregulators: An Overview. Endocrine Reviews, 2002, 23, 175-200.	20.1	767
3	Generation and characterization of androgen receptor knockout (ARKO) mice: An <i>in vivo</i> model for the study of androgen functions in selective tissues. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13498-13503.	7.1	591
4	The Roles of Androgen Receptors and Androgen-Binding Proteins in Nongenomic Androgen Actions. Molecular Endocrinology, 2002, 16, 2181-2187.	3.7	476
5	Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6876-6881.	7.1	405
6	Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO Journal, 2002, 21, 4037-4048.	7.8	387
7	Androgen Receptor Roles in Spermatogenesis and Fertility: Lessons from Testicular Cell-Specific Androgen Receptor Knockout Mice. Endocrine Reviews, 2009, 30, 119-132.	20.1	375
8	Promotion of Bladder Cancer Development and Progression by Androgen Receptor Signals. Journal of the National Cancer Institute, 2007, 99, 558-568.	6.3	353
9	Androgen deprivation therapy for prostate cancer: Current status and future prospects. Prostate, 2004, 61, 332-353.	2.3	279
10	Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proceedings of the United States of America, 2004, 101, 11209-11214.	7.1	270
11	Androgen Receptor: An Overview. Critical Reviews in Eukaryotic Gene Expression, 1995, 5, 97-125.	0.9	260
12	Cloning and Characterization of Androgen Receptor Coactivator, ARA55, in Human Prostate. Journal of Biological Chemistry, 1999, 274, 8316-8321.	3.4	255
13	Antitumor Agents. 217.â€Curcumin Analogues as Novel Androgen Receptor Antagonists with Potential as Anti-Prostate Cancer Agents. Journal of Medicinal Chemistry, 2002, 45, 5037-5042.	6.4	243
14	Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene Molecular Endocrinology, 1993, 7, 23-36.	3.7	238
15	Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12182-12187.	7.1	226
16	Androgen Receptor (AR) Coregulators: An Overview. , 2002, 23, 175-200.		217
17	Androgen Receptor Is a New Potential Therapeutic Target for the Treatment of Hepatocellular Carcinoma. Gastroenterology, 2008, 135, 947-955.e5.	1.3	213
18	Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2â€induced STAT3 activation. EMBO Molecular Medicine, 2013, 5, 1383-1401.	6.9	199

#	Article	IF	CITATIONS
19	The Linkage of Kennedy's Neuron Disease to ARA24, the First Identified Androgen Receptor Polyglutamine Region-associated Coactivator. Journal of Biological Chemistry, 1999, 274, 20229-20234.	3.4	198
20	Cloning and Characterization of Human Prostate Coactivator ARA54, a Novel Protein That Associates with the Androgen Receptor. Journal of Biological Chemistry, 1999, 274, 8570-8576.	3.4	196
21	Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Letters, 2017, 394, 1-12.	7.2	186
22	Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12679-12684.	7.1	182
23	Androgen Receptor in Sertoli Cell Is Essential for Germ Cell Nursery and Junctional Complex Formation in Mouse Testes. Endocrinology, 2006, 147, 5624-5633.	2.8	177
24	Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18975-18980.	7.1	173
25	Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology, 2008, 47, 1924-1935.	7.3	173
26	Androgen Receptor Promotes Hepatitis B Virus–Induced Hepatocarcinogenesis Through Modulation of Hepatitis B Virus RNA Transcription. Science Translational Medicine, 2010, 2, 32ra35.	12.4	171
27	Suppression Versus Induction of Androgen Receptor Functions by the Phosphatidylinositol 3-Kinase/Akt Pathway in Prostate Cancer LNCaP Cells with Different Passage Numbers. Journal of Biological Chemistry, 2003, 278, 50902-50907.	3.4	170
28	Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-1± expression. Journal of Clinical Investigation, 2009, 119, 3739-3751.	8.2	169
29	Insulin and Leptin Resistance With Hyperleptinemia in Mice Lacking Androgen Receptor. Diabetes, 2005, 54, 1717-1725.	0.6	159
30	Androgen Receptor Acetylation Governs trans Activation and MEKK1-Induced Apoptosis without Affecting In Vitro Sumoylation and trans -Repression Function. Molecular and Cellular Biology, 2002, 22, 3373-3388.	2.3	155
31	LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nature Communications, 2019, 10, 2571.	12.8	153
32	Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochemical and Biophysical Research Communications, 2003, 305, 462-469.	2.1	150
33	ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nature Medicine, 2007, 13, 348-353.	30.7	147
34	Androgen Receptor Influences on Body Defense System via Modulation of Innate and Adaptive Immune Systems. American Journal of Pathology, 2012, 181, 1504-1512.	3.8	145
35	Abnormal Mammary Gland Development and Growth Retardation in Female Mice and MCF7 Breast Cancer Cells Lacking Androgen Receptor. Journal of Experimental Medicine, 2003, 198, 1899-1908. 	8.5	138
36	Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12188-12193.	7.1	134

#	Article	IF	CITATIONS
37	LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death and Differentiation, 2017, 24, 1502-1517.	11.2	131
38	Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis. Hepatology, 2012, 56, 176-185.	7.3	130
39	Androgen receptor roles in hepatocellular carcinoma, fatty liver, cirrhosis and hepatitis. Endocrine-Related Cancer, 2014, 21, R165-R182.	3.1	130
40	Localization of androgen receptor expression in human bone marrow. Journal of Pathology, 2001, 193, 361-366.	4.5	129
41	LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex. Nucleic Acids Research, 2019, 47, 4211-4225.	14.5	129
42	Proteasome Activity Is Required for Androgen Receptor Transcriptional Activity via Regulation of Androgen Receptor Nuclear Translocation and Interaction with Coregulators in Prostate Cancer Cells. Journal of Biological Chemistry, 2002, 277, 36570-36576.	3.4	127
43	Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17718-17723.	7.1	126
44	Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine, 2007, 32, 96-106.	2.2	126
45	Infiltrating Macrophages Promote Prostate Tumorigenesis via Modulating Androgen Receptor-Mediated CCL4–STAT3 Signaling. Cancer Research, 2013, 73, 5633-5646.	0.9	125
46	The role of androgen and androgen receptor in skin-related disorders. Archives of Dermatological Research, 2012, 304, 499-510.	1.9	124
47	Androgen Receptor Roles in the Development of Benign Prostate Hyperplasia. American Journal of Pathology, 2013, 182, 1942-1949.	3.8	124
48	Retinoblastoma, a Tumor Suppressor, Is a Coactivator for the Androgen Receptor in Human Prostate Cancer DU145 Cells. Biochemical and Biophysical Research Communications, 1998, 248, 361-367.	2.1	123
49	ASC-J9 Suppresses Castration-Resistant Prostate Cancer Growth through Degradation of Full-length and Splice Variant Androgen Receptors. Neoplasia, 2012, 14, 74-IN12.	5.3	123
50	Induction of Androgen Receptor Expression by Phosphatidylinositol 3-Kinase/Akt Downstream Substrate, FOXO3a, and Their Roles in Apoptosis of LNCaP Prostate Cancer Cells. Journal of Biological Chemistry, 2005, 280, 33558-33565.	3.4	122
51	Identification of ARA70 as a Ligand-enhanced Coactivator for the Peroxisome Proliferator-activated Receptor Î ³ . Journal of Biological Chemistry, 1999, 274, 16147-16152.	3.4	120
52	Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. Journal of Experimental Medicine, 2009, 206, 1181-1199.	8.5	119
53	Androgen Receptor Interacts with the Positive Elongation Factor P-TEFb and Enhances the Efficiency of Transcriptional Elongation. Journal of Biological Chemistry, 2001, 276, 9978-9984.	3.4	118
54	Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1. Biology of Reproduction, 2013, 89, 21.	2.7	114

#	Article	IF	CITATIONS
55	Differential Androgen Deprivation Therapies with Anti-androgens Casodex/Bicalutamide or MDV3100/Enzalutamide versus Anti-androgen Receptor ASC-J9® Lead to Promotion versus Suppression of Prostate Cancer Metastasis. Journal of Biological Chemistry, 2013, 288, 19359-19369.	3.4	106
56	Nongenomic Androgen Activation of Phosphatidylinositol 3-Kinase/Akt Signaling Pathway in MC3T3-E1 Osteoblasts. Journal of Bone and Mineral Research, 2004, 19, 1181-1190.	2.8	104
57	Decreased Tumorigenesis and Mortality from Bladder Cancer in Mice Lacking Urothelial Androgen Receptor. American Journal of Pathology, 2013, 182, 1811-1820.	3.8	104
58	Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9 ® to Suppress Enzalutamide-resistant Prostate Cancer Progression. European Urology, 2017, 72, 835-844.	1.9	103
59	From Androgen Receptor to the General Transcription Factor TFIIH. Journal of Biological Chemistry, 2000, 275, 9308-9313.	3.4	102
60	Supervillin associates with androgen receptor and modulates its transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 661-666.	7.1	99
61	Androgen Receptor Coregulators in Prostate Cancer. Clinical Cancer Research, 2004, 10, 2208-2219.	7.0	98
62	Androgen receptor corepressors: An overview. Prostate, 2005, 63, 117-130.	2.3	98
63	Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Research, 1999, 27, 2165-2174.	14.5	97
64	Transcriptional Up-Regulation of the Human Androgen Receptor by Androgen in Bone Cells*. Endocrinology, 1997, 138, 2291-2300.	2.8	95
65	Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Research, 2003, 63, 4888-94.	0.9	95
66	TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13353-13358.	7.1	94
67	Differential Modulation of Androgen Receptor-mediated Transactivation by Smad3 and Tumor Suppressor Smad4. Journal of Biological Chemistry, 2002, 277, 43749-43756.	3.4	93
68	Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene, 2018, 37, 5037-5053.	5.9	93
69	New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. Journal of Molecular Cell Biology, 2013, 5, 14-26.	3.3	91
70	Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15058-15063.	7.1	88
71	Suppression of Androgen Receptor-mediated Transactivation and Cell Growth by the Glycogen Synthase Kinase 31 ² in Prostate Cells. Journal of Biological Chemistry, 2004, 279, 32444-32452.	3.4	86
72	Endothelial Cells Enhance Prostate Cancer Metastasis via IL-6→Androgen Receptor→TGF-β→MMP-9 Signals. Molecular Cancer Therapeutics, 2013, 12, 1026-1037.	4.1	86

#	Article	IF	CITATIONS
73	Molecular basis for the antiandrogen withdrawal syndrome. Journal of Cellular Biochemistry, 2004, 91, 3-12.	2.6	85
74	Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treatment Reviews, 2014, 40, 31-40.	7.7	85
75	Autoregulation of androgen receptor expression in rodent prostate: Immunohistochemical and in situ hybridization analysis. Biochemical and Biophysical Research Communications, 1991, 177, 488-496.	2.1	83
76	Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. Journal of Steroid Biochemistry and Molecular Biology, 2002, 81, 291-308.	2.5	83
77	Molecular communication between androgen receptor and general transcription machinery. Journal of Steroid Biochemistry and Molecular Biology, 2003, 84, 41-49.	2.5	83
78	Tumor microenvironment B cells increase bladder cancer metastasis <i>via</i> modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget, 2015, 6, 26065-26078.	1.8	83
79	Functional Domain and Motif Analyses of Androgen Receptor Coregulator ARA70 and Its Differential Expression in Prostate Cancer. Journal of Biological Chemistry, 2004, 279, 33438-33446.	3.4	82
80	ASC-J9 Suppresses Renal Cell Carcinoma Progression by Targeting an Androgen Receptor–Dependent HIF2α/VEGF Signaling Pathway. Cancer Research, 2014, 74, 4420-4430.	0.9	77
81	Transgelin Functions as a Suppressor via Inhibition of ARA54-Enhanced Androgen Receptor Transactivation and Prostate Cancer Cell Growth. Molecular Endocrinology, 2007, 21, 343-358.	3.7	76
82	The Use of Phage Display Technique for the Isolation of Androgen Receptor Interacting Peptides with (F/W)XXL(F/W) and FXXLY New Signature Motifs. Journal of Biological Chemistry, 2003, 278, 23691-23698.	3.4	75
83	Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals. Cancer Letters, 2016, 373, 45-56.	7.2	75
84	Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→miRNAâ€541→androgen receptor (AR)→MMP9 signaling. Molecular Oncology, 2015, 9, 44-57.	4.6	74
85	Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death and Disease, 2019, 10, 37.	6.3	74
86	Deficits in Motor Coordination with Aberrant Cerebellar Development in Mice Lacking Testicular Orphan Nuclear Receptor 4. Molecular and Cellular Biology, 2005, 25, 2722-2732.	2.3	73
87	New Therapeutic Approach to Suppress Castration-Resistant Prostate Cancer Using ASC-J9 via Targeting Androgen Receptor in Selective Prostate Cells. American Journal of Pathology, 2013, 182, 460-473.	3.8	73
88	Infiltrating mast cells enhance prostate cancer invasion <i>via</i> altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget, 2015, 6, 14179-14190.	1.8	72
89	Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals. Oncotarget, 2016, 7, 7842-7855.	1.8	72
90	Hydroxyflutamide may not always be a pure antiandrogen. Lancet, The, 1997, 349, 852-853.	13.7	70

#	Article	IF	CITATIONS
91	Antisense TR3 Orphan Receptor Can Increase Prostate Cancer Cell Viability with Etoposide Treatment ¹ . Endocrinology, 1998, 139, 2329-2334.	2.8	70
92	Targeting Androgen Receptor to Suppress Macrophage-induced EMT and Benign Prostatic Hyperplasia (BPH) Development. Molecular Endocrinology, 2012, 26, 1707-1715.	3.7	70
93	Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of proâ€inflammatory cytokines/chemokines. EMBO Molecular Medicine, 2012, 4, 791-807.	6.9	70
94	Metformin Inhibits Nuclear Receptor TR4–Mediated Hepatic Stearoyl-CoA Desaturase 1 Gene Expression With Altered Insulin Sensitivity. Diabetes, 2011, 60, 1493-1503.	0.6	69
95	Androgen Receptor (AR) Pathophysiological Roles in Androgen Related Diseases in Skin, Metabolism Syndrome, Bone/Muscle and Neuron/Immune Systems: Lessons Learned from Mice Lacking AR in Specific Cells. Nuclear Receptor Signaling, 2013, 11, nrs.11001.	1.0	69
96	Differential Induction of Androgen Receptor Transactivation by Different Androgen Receptor Coactivators in Human Prostate Cancer DU145 Cells. Endocrine, 1999, 11, 195-202.	2.2	68
97	Susceptibility to Autoimmunity and B Cell Resistance to Apoptosis in Mice Lacking Androgen Receptor in B Cells. Molecular Endocrinology, 2009, 23, 444-453.	3.7	68
98	Identification and Characterization of a Novel Androgen Receptor Coregulator ARA267-α in Prostate Cancer Cells. Journal of Biological Chemistry, 2001, 276, 40417-40423.	3.4	67
99	Defects of Prostate Development and Reproductive System in the Estrogen Receptor-α Null Male Mice. Endocrinology, 2009, 150, 251-259.	2.8	67
100	Neuronal Androgen Receptor Regulates Insulin Sensitivity via Suppression of Hypothalamic NF-κB–Mediated PTP1B Expression. Diabetes, 2013, 62, 411-423.	0.6	67
101	Tissue Prostate-Specific Antigen Facilitates Refractory Prostate Tumor Progression via Enhancing ARA70-Regulated Androgen Receptor Transactivation. Cancer Research, 2008, 68, 7110-7119.	0.9	66
102	The miR-367-3p Increases Sorafenib Chemotherapy Efficacy to Suppress Hepatocellular Carcinoma Metastasis through Altering the Androgen Receptor Signals. EBioMedicine, 2016, 12, 55-67.	6.1	66
103	ERÎ ² -Mediated Alteration of circATP2B1 and miR-204-3p Signaling Promotes Invasion of Clear Cell Renal Cell Carcinoma. Cancer Research, 2018, 78, 2550-2563.	0.9	66
104	Loss of TR4 Orphan Nuclear Receptor Reduces Phosphoenolpyruvate Carboxykinase–Mediated Gluconeogenesis. Diabetes, 2007, 56, 2901-2909.	0.6	65
105	Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate, 2012, 72, 437-449.	2.3	65
106	Hyperleptinemia without Obesity in Male Mice Lacking Androgen Receptor in Adipose Tissue. Endocrinology, 2008, 149, 2361-2368.	2.8	63
107	Androgen Receptor (AR) NH2- and COOH-Terminal Interactions Result in the Differential Influences on the AR-Mediated Transactivation and Cell Growth. Molecular Endocrinology, 2005, 19, 350-361.	3.7	62
108	Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Medical Oncology, 2013, 30, 674.	2.5	62

#	Article	IF	CITATIONS
109	Increased Infiltrated Macrophages in Benign Prostatic Hyperplasia (BPH). Journal of Biological Chemistry, 2012, 287, 18376-18385.	3.4	61
110	Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Letters, 2012, 316, 11-22.	7.2	61
111	Androgen Receptor Roles in Insulin Resistance and Obesity in Males: The Linkage of Androgen-Deprivation Therapy to Metabolic Syndrome. Diabetes, 2014, 63, 3180-3188.	0.6	61
112	Stromal Androgen Receptor Roles in the Development of Normal Prostate, Benign Prostate Hyperplasia, and Prostate Cancer. American Journal of Pathology, 2015, 185, 293-301.	3.8	61
113	Targeted Inactivation of Testicular Nuclear Orphan Receptor 4 Delays and Disrupts Late Meiotic Prophase and Subsequent Meiotic Divisions of Spermatogenesis. Molecular and Cellular Biology, 2004, 24, 5887-5899.	2.3	60
114	Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: Potential therapeutic approaches for prostate cancer. Molecular Carcinogenesis, 2005, 44, 1-10.	2.7	60
115	Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nature Communications, 2017, 8, 918.	12.8	60
116	Androgen receptorâ€regulated circ <scp>FNTA</scp> activates <scp>KRAS</scp> signaling to promote bladder cancer invasion. EMBO Reports, 2020, 21, e48467.	4.5	60
117	Identification of Human TR2 Orphan Receptor Response Element in the Transcriptional Initiation Site of the Simian Virus 40 Major Late Promoter. Journal of Biological Chemistry, 1995, 270, 5434-5440.	3.4	58
118	Negative Feedback Control of the Retinoid-Retinoic Acid/Retinoid X Receptor Pathway by the Human TR4 Orphan Receptor, a Member of the Steroid Receptor Superfamily. Journal of Biological Chemistry, 1998, 273, 13437-13443.	3.4	58
119	Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5124-5129.	7.1	58
120	Targeting the Unique Methylation Pattern of Androgen Receptor (AR) Promoter in Prostate Stem/Progenitor Cells with 5-Aza-2′-deoxycytidine (5-AZA) Leads to Suppressed Prostate Tumorigenesis. Journal of Biological Chemistry, 2012, 287, 39954-39966.	3.4	58
121	Targeting androgen receptor in bone marrow mesenchymal stem cells leads to better transplantation therapy efficacy in liver cirrhosis. Hepatology, 2013, 57, 1550-1563.	7.3	58
122	Androgen receptor (AR) in cardiovascular diseases. Journal of Endocrinology, 2016, 229, R1-R16.	2.6	58
123	Induction of the Intronic Enhancer of the Human Ciliary Neurotrophic Factor Receptor (CNTFRäGene by the TR4 Orphan Receptor. Journal of Biological Chemistry, 1997, 272, 3109-3116.	3.4	57
124	A Dominant-negative Mutant of Androgen Receptor Coregulator ARA54 Inhibits Androgen Receptor-mediated Prostate Cancer Growth. Journal of Biological Chemistry, 2002, 277, 4609-4617.	3.4	57
125	Identification of Direct Repeat 4 as a Positive Regulatory Element for the Human TR4 Orphan Receptor. Journal of Biological Chemistry, 1997, 272, 12215-12220.	3.4	56
126	Human Checkpoint Protein hRad9 Functions as a Negative Coregulator To Repress Androgen Receptor Transactivation in Prostate Cancer Cells. Molecular and Cellular Biology, 2004, 24, 2202-2213.	2.3	55

#	Article	IF	CITATIONS
127	Altered prostate epithelial development and ICFâ€1 signal in mice lacking the androgen receptor in stromal smooth muscle cells. Prostate, 2011, 71, 517-524.	2.3	55
128	Suppressed Prostate Epithelial Development with Impaired Branching Morphogenesis in Mice Lacking Stromal Fibromuscular Androgen Receptor. Molecular Endocrinology, 2012, 26, 52-66.	3.7	55
129	The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling. Cell Death and Differentiation, 2020, 27, 3258-3272.	11.2	54
130	APPL Suppresses Androgen Receptor Transactivation via Potentiating Akt Activity. Journal of Biological Chemistry, 2003, 278, 16820-16827.	3.4	52
131	Multiple Functions of the TR2-11 Orphan Receptor in Modulating Activation of Two Key Cis-acting Elements Involved in the Retinoic Acid Signal Transduction System. Journal of Biological Chemistry, 1995, 270, 30121-30128.	3.4	51
132	ldentification of a new androgen receptor (AR) coâ€regulator BUD31 and related peptides to suppress wildâ€type and mutated ARâ€mediated prostate cancer growth via peptide screening and Xâ€ray structure analysis. Molecular Oncology, 2014, 8, 1575-1587.	4.6	51
133	Suppression of Gene Expression on the Simian Virus 40 Major Late Promoter by Human TR4 Orphan Receptor. Journal of Biological Chemistry, 1995, 270, 30129-30133.	3.4	50
134	Androgen Receptor Regulates Expression of Skeletal Muscle–Specific Proteins and Muscle Cell Types. Endocrine, 2004, 25, 27-32.	2.2	50
135	Involvement of Interleukin-6 and Androgen Receptor Signaling in Pancreatic Cancer. Genes and Cancer, 2010, 1, 859-867.	1.9	50
136	Increased Chemosensitivity via Targeting Testicular Nuclear Receptor 4 (TR4)-Oct4-Interleukin 1 Receptor Antagonist (IL1Ra) Axis in Prostate Cancer CD133+ Stem/Progenitor Cells to Battle Prostate Cancer. Journal of Biological Chemistry, 2013, 288, 16476-16483.	3.4	49
137	Targeting Androgen Receptor (AR)→IL12A Signal Enhances Efficacy of Sorafenib plus NK Cells Immunotherapy to Better Suppress HCC Progression. Molecular Cancer Therapeutics, 2016, 15, 731-742.	4.1	49
138	Differential Regulation of Direct Repeat 3 Vitamin D3and Direct Repeat 4 Thyroid Hormone Signaling Pathways by the Human TR4 Orphan Receptor. Journal of Biological Chemistry, 1999, 274, 16198-16205.	3.4	48
139	Androgen Receptor Enhances Kidney Stone-CaOx Crystal Formation via Modulation of Oxalate Biosynthesis & Oxidative Stress. Molecular Endocrinology, 2014, 28, 1291-1303.	3.7	48
140	Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells. Cancer Letters, 2014, 351, 64-71.	7.2	48
141	Differential Induction of the Androgen Receptor Transcriptional Activity by Selective Androgen Receptor Coactivators Keio Journal of Medicine, 1999, 48, 87-92.	1.1	48
142	Modulation of Estrogen Receptor-mediated Transactivation by Orphan Receptor TR4 in MCF-7 Cells. Journal of Biological Chemistry, 2002, 277, 14622-14628.	3.4	47
143	The Expression and Evaluation of Androgen Receptor in Human Renal Cell Carcinoma. Urology, 2014, 83, 510.e19-510.e24.	1.0	47
144	Antiâ€androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation <i>via</i> altering the infiltrated mast cellsÂ→Âandrogen receptor (AR)Â→ÂmiRNA32 signals. Molecular Oncology, 2015,	4.6	47

9, 1241-1251.

#	Article	IF	CITATIONS
145	Inhibition of Hair Growth by Testosterone in the Presence of Dermal Papilla Cells from the Frontal Bald Scalp of the Postpubertal Stumptailed Macaque1. Endocrinology, 1997, 138, 356-361.	2.8	46
146	Suppression of Androgen Receptor Transactivation by Pyk2 via Interaction and Phosphorylation of the ARA55 Coregulator. Journal of Biological Chemistry, 2002, 277, 15426-15431.	3.4	46
147	Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells. Prostate, 2004, 60, 61-67.	2.3	46
148	Androgen receptor (AR)/miR-520f-3p/SOX9 signaling is involved in altering hepatocellular carcinoma (HCC) cell sensitivity to the Sorafenib therapy under hypoxia via increasing cancer stem cells phenotype. Cancer Letters, 2019, 444, 175-187.	7.2	46
149	Interruption of nuclear factor kappaB signaling by the androgen receptor facilitates 12-O-tetradecanoylphorbolacetate-induced apoptosis in androgen-sensitive prostate cancer LNCaP cells. Cancer Research, 2003, 63, 7106-12.	0.9	46
150	Tumor suppressor PAX6 functions as androgen receptor Coâ€repressor to inhibit prostate cancer growth. Prostate, 2010, 70, 190-199.	2.3	45
151	Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals. Oncotarget, 2015, 6, 12326-12339.	1.8	45
152	Antitumor agents 222. †â€For Part 221, see ref 1. Synthesis and anti-androgen activity of new diarylheptanoids. Bioorganic and Medicinal Chemistry, 2003, 11, 5083-5090.	3.0	44
153	BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. International Journal of Oncology, 2015, 47, 719-727.	3.3	44
154	ASC-J9® suppresses castration resistant prostate cancer progression via degrading the enzalutamide-induced androgen receptor mutant AR-F876L. Cancer Letters, 2016, 379, 154-160.	7.2	44
155	p53 Is a Mediator for Radiation-repressed Human TR2 Orphan Receptor Expression in MCF-7 Cells, a New Pathway from Tumor Suppressor to Member of the Steroid Receptor Superfamily. Journal of Biological Chemistry, 1996, 271, 14649-14652.	3.4	43
156	Disruption of TR4 Orphan Nuclear Receptor Reduces the Expression of Liver Apolipoprotein E/C-I/C-II Gene Cluster. Journal of Biological Chemistry, 2003, 278, 46919-46926.	3.4	43
157	Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFl²1/p-Smad2/3 signaling. Cancer Letters, 2020, 472, 151-164.	7.2	43
158	Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via function as a modulator to promote the ARA70-enhanced androgen receptor transactivation. Tumor Biology, 2014, 35, 1881-1890.	1.8	42
159	Activation of mitogen-activated protein kinase pathway by the antiandrogen hydroxyflutamide in androgen receptor-negative prostate cancer cells. Cancer Research, 2002, 62, 6039-44.	0.9	42
160	Ontogeny and Autoregulation of Androgen Receptor mRNA Expression in the Nervous System. Endocrine, 1998, 9, 79-88.	2.2	41
161	The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer. Nature Communications, 2020, 11, 2689.	12.8	41
162	Infiltrating neutrophils increase bladder cancer cell invasion <i>via</i> modulation of androgen receptor (AR)/MMP13 signals. Oncotarget, 2015, 6, 43081-43089.	1.8	41

#	Article	IF	CITATIONS
163	New Therapy via Targeting Androgen Receptor in Monocytes/Macrophages to Battle Atherosclerosis. Hypertension, 2014, 63, 1345-1353.	2.7	40
164	Reducing the Agonist Activity of Antiandrogens by a Dominant-negative Androgen Receptor Coregulator ARA70 in Prostate Cancer Cells. Journal of Biological Chemistry, 2003, 278, 19619-19626.	3.4	39
165	Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. Journal of Endocrinology, 2012, 213, 173-182.	2.6	39
166	Concise Review: Androgen Receptor Differential Roles in Stem/Progenitor Cells Including Prostate, Embryonic, Stromal, and Hematopoietic Lineages. Stem Cells, 2014, 32, 2299-2308.	3.2	39
167	Targeting fatty acid synthase with ASC-J9 suppresses proliferation and invasion of prostate cancer cells. Molecular Carcinogenesis, 2016, 55, 2278-2290.	2.7	39
168	Targeting Thymic Epithelia AR Enhances T-Cell Reconstitution and Bone Marrow Transplant Grafting Efficacy. Molecular Endocrinology, 2013, 27, 25-37.	3.7	38
169	Preclinical studies using miRâ€32â€5p to suppress clear cell renal cell carcinoma metastasis <i>via</i> altering the miRâ€32â€5p/TR4/HGF/Met signaling. International Journal of Cancer, 2018, 143, 100-112.	5.1	38
170	Suppression of Estrogen Receptor-mediated Transcription and Cell Growth by Interaction with TR2 Orphan Receptor. Journal of Biological Chemistry, 2002, 277, 33571-33579.	3.4	37
171	Roles of Testicular Orphan Nuclear Receptors 2 and 4 in Early Embryonic Development and Embryonic Stem Cells. Endocrinology, 2009, 150, 2454-2462.	2.8	37
172	Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH). Molecular Endocrinology, 2013, 27, 1617-1631.	3.7	37
173	Androgen Receptor Promotes Abdominal Aortic Aneurysm Development via Modulating Inflammatory Interleukin-1α and Transforming Growth Factor-β1 Expression. Hypertension, 2015, 66, 881-891.	2.7	37
174	Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status. Oncotarget, 2015, 6, 31203-31215.	1.8	37
175	Suppression of the Human Erythropoietin Gene Expression by the TR2 Orphan Receptor, a Member of the Steroid Receptor Superfamily. Journal of Biological Chemistry, 1996, 271, 10405-10412.	3.4	36
176	Targeting Androgen Receptor Leads to Suppression of Prostate Cancer via Induction of Autophagy. Journal of Urology, 2012, 188, 1361-1368.	0.4	36
177	Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death and Disease, 2019, 10, 275.	6.3	36
178	Subfertility with Defective Folliculogenesis in Female Mice Lacking Testicular Orphan Nuclear Receptor 4. Molecular Endocrinology, 2008, 22, 858-867.	3.7	35
179	ADT with antiandrogens in prostate cancer induces adverse effect of increasing resistance, neuroendocrine differentiation and tumor metastasis. Cancer Letters, 2018, 439, 47-55.	7.2	35
180	A Bidirectional Regulation between the TR2/TR4 Orphan Receptors (TR2/TR4) and the Ciliary Neurotrophic Factor (CNTF) Signaling Pathway. Journal of Biological Chemistry, 1998, 273, 20877-20885.	3.4	34

#	Article	IF	CITATIONS
181	A new prostate cancer therapeutic approach: Combination of androgen ablation with COXâ€2 inhibitor. International Journal of Cancer, 2008, 123, 195-201.	5.1	34
182	Antiandrogen Therapy with Hydroxyflutamide or Androgen Receptor Degradation Enhancer ASC-J9 Enhances BCG Efficacy to Better Suppress Bladder Cancer Progression. Molecular Cancer Therapeutics, 2015, 14, 2586-2594.	4.1	34
183	Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7). Cancer Letters, 2017, 398, 62-69.	7.2	34
184	Androgen receptor (AR) degradation enhancer ASC-J9 \hat{A}^{\otimes} in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth. Cancer Letters, 2018, 417, 182-191.	7.2	34
185	ARA67/PAT1 Functions as a Repressor To Suppress Androgen Receptor Transactivation. Molecular and Cellular Biology, 2004, 24, 1044-1057.	2.3	33
186	TR4 nuclear receptor promotes prostate cancer metastasis <i>via</i> upregulation of CCL2/CCR2 signaling. International Journal of Cancer, 2015, 136, 955-964.	5.1	33
187	Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. Cancer Letters, 2017, 397, 133-143.	7.2	33
188	TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals. Oncogene, 2018, 37, 5901-5912.	5.9	33
189	Estrogen receptor α promotes lung cancer cell invasion via increase of and crossâ€ŧalk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Molecular Oncology, 2020, 14, 1779-1799.	4.6	33
190	Targeting the estrogen receptor alpha (ERα)-mediated circ-SMG1.72/miR-141-3p/Gelsolin signaling to better suppress the HCC cell invasion. Oncogene, 2020, 39, 2493-2508.	5.9	33
191	Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion <i>via</i> altering the CCL5/HIF2α/androgen receptor signals. Oncotarget, 2015, 6, 27555-27565.	1.8	33
192	Role of Chaperones in Nuclear Translocation. Endocrine, 2001, 14, 143-150.	2.2	32
193	Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis, 2013, 34, 257-267.	2.8	32
194	Targeting TR4 nuclear receptor suppresses prostate cancer invasion via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals. Molecular Cancer, 2015, 14, 16.	19.2	32
195	Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARÎ ³ /MMP-9 signals. Cell Death and Differentiation, 2021, 28, 2145-2159.	11.2	32
196	Transcriptional Up-Regulation of the Human Androgen Receptor by Androgen in Bone Cells. Endocrinology, 1997, 138, 2291-2300.	2.8	32
197	TR4 nuclear receptor increases prostate cancer invasion <i>via</i> decreasing the miR-373-3p expression to alter TGFβR2/p-Smad3 signals. Oncotarget, 2015, 6, 15397-15409.	1.8	32
198	Premature aging with impaired oxidative stress defense in mice lacking TR4. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E91-E98.	3.5	31

#	Article	IF	CITATIONS
199	The p53/Retinoblastoma-mediated Repression of Testicular Orphan Receptor-2 in the Rhesus Monkey with Cryptorchidism. Journal of Biological Chemistry, 2000, 275, 23877-23883.	3.4	30
200	Abnormal Mitochondrial Function and Impaired Granulosa Cell Differentiation in Androgen Receptor Knockout Mice. International Journal of Molecular Sciences, 2015, 16, 9831-9849.	4.1	30
201	Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells. Asian Journal of Andrology, 2012, 14, 294-300.	1.6	30
202	Differential regulation of testosterone vs. 5alpha-dihydrotestosterone by selective androgen response elements. Molecular and Cellular Biochemistry, 2000, 206, 169-175.	3.1	29
203	TR4 activates FATP1 gene expression to promote lipid accumulation in 3T3-L1 adipocytes. FEBS Letters, 2011, 585, 2763-2767.	2.8	29
204	Recruited T cells promote the bladder cancer metastasis via up-regulation of the estrogen receptor β/IL-1/c-MET signals. Cancer Letters, 2018, 430, 215-223.	7.2	29
205	Suppression of Hepatitis B Virus Core Promoter by the Nuclear Orphan Receptor TR4. Journal of Biological Chemistry, 2003, 278, 9353-9360.	3.4	28
206	The diverse and contrasting effects of using human prostate cancer cell lines to study androgen receptor roles in prostate cancer. Asian Journal of Andrology, 2009, 11, 39-48.	1.6	28
207	Suppression of Androgen Receptor Enhances the Self-renewal of Mesenchymal Stem Cells Through Elevated Expression of EGFR. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1222-1234.	4.1	27
208	ASC-J9 \hat{A}^{\otimes} suppresses prostate cancer cell invasion via altering the sumoylation-phosphorylation of STAT3. Cancer Letters, 2018, 425, 21-30.	7.2	27
209	Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer. Oncogene, 2019, 38, 4875-4884.	5.9	27
210	Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gαi protein/MAPK/MMP9 intracellular signaling. Oncogene, 2020, 39, 574-586.	5.9	27
211	Up-Regulation of SOX9 in Sertoli Cells from Testiculopathic Patients Accounts for Increasing Anti-Mullerian Hormone Expression via Impaired Androgen Receptor Signaling. PLoS ONE, 2013, 8, e76303.	2.5	27
212	TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3. Prostate, 2003, 57, 129-133.	2.3	26
213	Higher Expression of Peroxisome Proliferator-activated Receptor Î ³ or Its Activation byÂAgonist Thiazolidinedione-rosiglitazone Promotes Bladder Cancer CellÂMigration andÂInvasion. Urology, 2013, 81, 1109.e1-1109.e6.	1.0	26
214	TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system. Carcinogenesis, 2014, 35, 1399-1406.	2.8	26
215	Androgen-deprivation therapy with enzalutamide enhances prostate cancer metastasis via decreasing the EPHB6 suppressor expression. Cancer Letters, 2017, 408, 155-163.	7.2	26
216	TR2 and TR4 Orphan Nuclear Receptors. Current Topics in Developmental Biology, 2017, 125, 357-373.	2.2	26

#	Article	IF	CITATIONS
217	The Protective Roles of Estrogen Receptor <i>β</i> in Renal Calcium Oxalate Crystal Formation <i>via</i> Reducing the Liver Oxalate Biosynthesis and Renal Oxidative Stress-Mediated Cell Injury. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	4.0	26
218	The miR-361-3p increases enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death and Disease, 2020, 11, 807.	6.3	26
219	Repression of Glucagon Gene Transcription by Peroxisome Proliferator-activated Receptor γ through Inhibition of Pax6 Transcriptional Activity. Journal of Biological Chemistry, 2002, 277, 1941-1948.	3.4	25
220	Androgen receptor enhances entosis, a nonâ€apoptotic cell death, through modulation of Rho/ROCK pathway in prostate cancer cells. Prostate, 2013, 73, 1306-1315.	2.3	25
221	Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer. Clinical Investigation, 2014, 4, 935-950.	0.0	25
222	ASC-J9®, and not Casodex or Enzalutamide, suppresses prostate cancer stem/progenitor cell invasion via altering the EZH2-STAT3 signals. Cancer Letters, 2016, 376, 377-386.	7.2	25
223	Sorafenib with ASC-J9 [®] synergistically suppresses the HCC progression <i>via</i> altering the pSTAT3-CCL2/Bcl2 signals. International Journal of Cancer, 2017, 140, 705-717.	5.1	25
224	Transcriptional activation of human TR3/nur77 gene expression by human T-lymphotropic virus type I Tax protein through two AP-1-like elements. Journal of General Virology, 1999, 80, 3073-3081.	2.9	25
225	YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth. Oncotarget, 2017, 8, 115054-115067.	1.8	24
226	Deficiency in Androgen Receptor Aggravates the Depressive-Like Behaviors in Chronic Mild Stress Model of Depression. Cells, 2019, 8, 1021.	4.1	24
227	Androgen receptor regulates ASS1P3/miR-34a-5p/ASS1 signaling to promote renal cell carcinoma cell growth. Cell Death and Disease, 2019, 10, 339.	6.3	24
228	Targeting the TR4 nuclear receptor-mediated IncTASR/AXL signaling with tretinoin increases the sunitinib sensitivity to better suppress the RCC progression. Oncogene, 2020, 39, 530-545.	5.9	24
229	Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochemical and Biophysical Research Communications, 2005, 328, 85-90.	2.1	23
230	Altered TNSALP Expression and Phosphate Regulation Contribute to Reduced Mineralization in Mice Lacking Androgen Receptor. Molecular and Cellular Biology, 2008, 28, 7354-7367.	2.3	23
231	Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis. Reproductive Biology and Endocrinology, 2012, 10, 43.	3.3	23
232	Epidermal growth factor enhances androgen receptor-mediated bladder cancer progression and invasion via potentiation of AR transactivation. Oncology Reports, 2013, 30, 2917-2922.	2.6	23
233	Minireview: Pathophysiological Roles of the TR4 Nuclear Receptor: Lessons Learned From Mice Lacking TR4. Molecular Endocrinology, 2014, 28, 805-821.	3.7	23
234	Infiltrating neutrophils promote renal cell carcinoma (RCC) proliferation via modulating androgen receptor (AR) → c-Myc signals. Cancer Letters, 2015, 368, 71-78.	7.2	23

#	Article	IF	CITATIONS
235	Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through IncRNA-TANAR. Oncogene, 2021, 40, 1674-1689.	5.9	23
236	Oxidative Stress Stimulates Testicular Orphan Receptor 4 through Forkhead Transcription Factor Forkhead Box O3a. Endocrinology, 2008, 149, 3490-3499.	2.8	22
237	The selective inhibitory effect of a synthetic tanshinone derivative on prostate cancer cells. Prostate, 2012, 72, 803-816.	2.3	22
238	Testosterone Delivered with a Scaffold Is as Effective as Bone Morphologic Protein-2 in Promoting the Repair of Critical-Size Segmental Defect of Femoral Bone in Mice. PLoS ONE, 2013, 8, e70234.	2.5	22
239	Androgen receptor mitigates postoperative disease progression of hepatocellular carcinoma by suppressing CD90+ populations and cell migration and by promoting anoikis in circulating tumor cells. Oncotarget, 2016, 7, 46448-46465.	1.8	22
240	Identification of a Novel Testicular Orphan Receptor-4 (TR4)-associated Protein as Repressor for the Selective Suppression of TR4-mediated Transactivation. Journal of Biological Chemistry, 2003, 278, 7709-7717.	3.4	21
241	The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development. Cerebellum, 2008, 7, 9-17.	2.5	21
242	Increased CK5/CK8-Positive Intermediate Cells with Stromal Smooth Muscle Cell Atrophy in the Mice Lacking Prostate Epithelial Androgen Receptor. PLoS ONE, 2011, 6, e20202.	2.5	21
243	Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Research, 2013, 11, 938-950.	0.7	21
244	Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals. Molecular Cancer Therapeutics, 2016, 15, 1943-1951.	4.1	21
245	Targeting newly identified ERβ/TGFâ€Î²1/SMAD3 signals with the FDAâ€approved antiâ€estrogen Faslodex or an ERβ selective antagonist in renal cell carcinoma. Molecular Oncology, 2018, 12, 2055-2071.	4.6	21
246	Preclinical study using androgen receptor (AR) degradation enhancer to increase radiotherapy efficacy via targeting radiation-increased AR to better suppress prostate cancer progression. EBioMedicine, 2019, 40, 504-516.	6.1	21
247	Targeting the androgen receptor (AR) with AR degradation enhancer ASC-J9® led to increase docetaxel sensitivity via suppressing the p21 expression. Cancer Letters, 2019, 444, 35-44.	7.2	21
248	Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC. Cell Death and Disease, 2020, 11, 367.	6.3	21
249	Expression of the orphan receptor TR4 during brain development of the rat. Molecular Brain Research, 2000, 77, 104-110.	2.3	20
250	TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression. Biochemical and Biophysical Research Communications, 2007, 361, 323-328.	2.1	20
251	Actin associated proteins function as androgen receptor coregulators: An implication of androgen receptor's roles in skeletal muscle. Journal of Steroid Biochemistry and Molecular Biology, 2008, 111, 157-163.	2.5	20
252	Activation of TR4 orphan nuclear receptor gene promoter by cAMP/PKA and C/EBP signaling. Endocrine, 2009, 36, 211-217.	2.3	20

#	Article	IF	CITATIONS
253	Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Letters, 2020, 495, 100-111.	7.2	20
254	Sunitinib increases the cancer stem cells and vasculogenic mimicry formation via modulating the IncRNA-ECVSR/ERβ/Hif2-α signaling. Cancer Letters, 2022, 524, 15-28.	7.2	20
255	Roles of Testosterone in the Growth of Keratinocytes Through Bald Frontal Dermal Papilla Cells. Endocrine, 1999, 11, 321-328.	2.2	19
256	Suppression of Androgen Receptor Transactivation and Prostate Cancer Cell Growth by Heterogeneous Nuclear Ribonucleoprotein A1 via Interaction with Androgen Receptor Coregulator ARA54. Endocrinology, 2007, 148, 1340-1349.	2.8	19
257	The reduced trabecular bone mass of adult ARKO male mice results from the decreased osteogenic differentiation of bone marrow stroma cells. Biochemical and Biophysical Research Communications, 2011, 411, 477-482.	2.1	19
258	Mice Lacking TR4 Nuclear Receptor Develop Mitochondrial Myopathy with Deficiency in Complex I. Molecular Endocrinology, 2011, 25, 1301-1310.	3.7	19
259	Targeting inflammatory cytokines-androgen receptor (AR) signaling with ASC-J9 [®] to better battle prostate cancer progression. Oncolmmunology, 2013, 2, e26853.	4.6	19
260	The Wedelolactone Derivative Inhibits Estrogen Receptor-Mediated Breast, Endometrial, and Ovarian Cancer Cells Growth. BioMed Research International, 2014, 2014, 1-11.	1.9	19
261	Determination of androgen receptor degradation enhancer ASC-J9® in mouse sera and organs with liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 117-122.	2.8	19
262	Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clinical and Translational Medicine, 2021, 11, e353.	4.0	19
263	Evaluation of RU58841 as an Anti-Androgen in Prostate PC3 Cells and a Topical Anti-Alopecia Agent in the Bald Scalp of Stumptailed Macaques. Endocrine, 1998, 9, 39-44.	2.2	18
264	TR4 nuclear receptor suppresses HCC cell invasion via downregulating the EphA2 expression. Cell Death and Disease, 2018, 9, 283.	6.3	18
265	ASC-J9® increases the bladder cancer chemotherapy efficacy via altering the androgen receptor (AR) and NF-κB survival signals. Journal of Experimental and Clinical Cancer Research, 2019, 38, 275.	8.6	18
266	TR4 Orphan Receptor Represses the Human Steroid 21-Hydroxylase Gene Expression through the Monomeric AGGTCA Motif. Biochemical and Biophysical Research Communications, 2001, 285, 1361-1368.	2.1	17
267	3Â-Acetoxyandrost-1,5-diene-17-ethylene ketal functions as a potent antiandrogen with marginal agonist activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4440-4444.	7.1	17
268	Does androgen deprivation improve treatment outcomes in patients with low-risk and intermediate-risk prostate cancer?. Nature Clinical Practice Oncology, 2005, 2, 236-237.	4.3	17
269	Loss of Testicular Orphan Receptor 4 Impairs Normal Myelination in Mouse Forebrain. Molecular Endocrinology, 2007, 21, 908-920.	3.7	17
270	Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation. Cellular and Molecular Biology Letters, 2012, 17, 309-22.	7.0	17

#	Article	IF	CITATIONS
271	TR4 Nuclear Receptor Alters the Prostate Cancer CD133+ Stem/Progenitor Cell Invasion via Modulating the EZH2-Related Metastasis Gene Expression. Molecular Cancer Therapeutics, 2015, 14, 1445-1453.	4.1	17
272	Actin monomer enhances supervillin-modulated androgen receptor transactivation. Biochemical and Biophysical Research Communications, 2004, 319, 393-396.	2.1	16
273	Increased Acetylation in the DNA-binding Domain of TR4 Nuclear Receptor by the Coregulator ARA55 Leads to Suppression of TR4 Transactivation. Journal of Biological Chemistry, 2011, 286, 21129-21136.	3.4	16
274	Differential roles of PPARÎ ³ vs TR4 in prostate cancer and metabolic diseases. Endocrine-Related Cancer, 2014, 21, R279-R300.	3.1	16
275	TR4 nuclear receptor enhances the cisplatin chemo-sensitivity <i>via</i> altering the ATF3 expression to better suppress HCC cell growth. Oncotarget, 2016, 7, 32088-32099.	1.8	16
276	Thyroid hormone direct repeat 4 response element is a positive regulatory element for the human TR2 orphan receptor, a member of steroid receptor superfamily. , 1998, 189, 195-200.		15
277	TR4 Orphan Receptor Crosstalks to Chicken Ovalbumin Upstream Protein-Transcription Factor and Thyroid Hormone Receptor to Induce the Transcriptional Activity of the Human Immunodeficiency Virus Type 1 Long-Terminal Repeat. Endocrine, 1998, 8, 169-176.	2.2	15
278	Quercetin Cumulatively Enhances Copper Induction of Metallothionein in Intestinal Cells. Biological Trace Element Research, 2001, 84, 001-010.	3.5	15
279	Androgen suppresses PML protein expression in prostate cancer CWR22R cells. Biochemical and Biophysical Research Communications, 2004, 314, 69-75.	2.1	15
280	Androgen receptor promotes the migration and invasion of upper urinary tract urothelial carcinoma cells through the upregulation of MMP-9 and COX-2. Oncology Reports, 2013, 30, 979-985.	2.6	15
281	C1QBP Regulates YBX1 to Suppress the Androgen Receptor (AR)-Enhanced RCC Cell Invasion. Neoplasia, 2017, 19, 135-144.	5.3	15
282	Abnormal cerebellar cytoarchitecture and impaired inhibitory signaling in adult mice lacking TR4 orphan nuclear receptor. Brain Research, 2007, 1168, 72-82.	2.2	14
283	R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. Molecular Therapy - Oncolytics, 2021, 23, 65-81.	4.4	14
284	Induction of TR4 Orphan Receptor by Retinoic Acid in Human HaCaT Keratinocytes. Journal of Investigative Dermatology, 1999, 112, 426-431.	0.7	13
285	Identification of the histamine H1 receptor gene as a differentially repressed target of the human TR2 orphan receptor. Molecular and Cellular Biochemistry, 1999, 194, 199-207.	3.1	13
286	Modulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor. Biochemical and Biophysical Research Communications, 2004, 323, 876-883.	2.1	13
287	Identification of steroid derivatives that function as potent antiandrogens. International Journal of Cancer, 2005, 117, 866-872.	5.1	13
288	TNF signaling mediates an enzalutamide-induced metastatic phenotype of prostate cancer and microenvironment cell co-cultures. Oncotarget, 2015, 6, 25726-25740.	1.8	13

#	Article	IF	CITATIONS
289	Isolation and Characterization of the Androgen Receptor Mutants with Divergent Transcriptional Activity in Response to Hydroxyflutamide. Endocrine, 2000, 12, 69-76.	2.2	12
290	Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor. Biochemical and Biophysical Research Communications, 2006, 351, 204-208.	2.1	12
291	TR4 Nuclear Receptor Different Roles in Prostate Cancer Progression. Frontiers in Endocrinology, 2015, 6, 78.	3.5	12
292	TR4 nuclear receptor enhances prostate cancer initiation via altering the stem cell population and EMT signals in the PPARG-deleted prostate cells. Oncoscience, 2015, 2, 142-150.	2.2	12
293	Identification of the Human Aldolase A Gene as the First Induced Target for the TR2 Orphan Receptor, a Member of the Steroid Hormone Receptor Superfamily. Biochemical and Biophysical Research Communications, 1997, 235, 205-211.	2.1	11
294	The second largest subunit of RNA polymerase II interacts with and enhances transactivation of androgen receptor. Biochemical and Biophysical Research Communications, 2003, 302, 162-169.	2.1	11
295	The roles of testicular nuclear receptor 4 (TR4) in male fertility-priapism and sexual behavior defects in TR4 knockout mice. Reproductive Biology and Endocrinology, 2011, 9, 138.	3.3	11
296	Testicular Nuclear Receptor 4 (TR4) Regulates UV Light-induced Responses via Cockayne Syndrome B Protein-mediated Transcription-coupled DNA Repair. Journal of Biological Chemistry, 2011, 286, 38103-38108.	3.4	11
297	Recent advances in the study of testicular nuclear receptor 4. Journal of Zhejiang University: Science B, 2013, 14, 171-177.	2.8	11
298	Testicular orphan nuclear receptor 4 is associated with the radio-sensitivity of prostate cancer. Prostate, 2015, 75, 1632-1642.	2.3	11
299	Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene, 2020, 39, 1891-1903.	5.9	11
300	Preclinical Study Using ABT263 to Increase Enzalutamide Sensitivity to Suppress Prostate Cancer Progression Via Targeting BCL2/ROS/USP26 Axis Through Altering ARv7 Protein Degradation. Cancers, 2020, 12, 831.	3.7	11
301	Targeting AR-Beclin 1 complex-modulated growth factor signaling increases the antiandrogen Enzalutamide sensitivity to better suppress the castration-resistant prostate cancer growth. Cancer Letters, 2019, 442, 483-490.	7.2	10
302	Preclinical studies using cisplatin/carboplatin to restore the Enzalutamide sensitivity via degrading the androgen receptor splicing variant 7 (ARv7) to further suppress Enzalutamide resistant prostate cancer. Cell Death and Disease, 2020, 11, 942.	6.3	10
303	ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. Journal of Experimental and Clinical Cancer Research, 2021, 40, 3.	8.6	10
304	Targeting the Lnc-OPHN1-5/androgen receptor/hnRNPA1 complex increases Enzalutamide sensitivity to better suppress prostate cancer progression. Cell Death and Disease, 2021, 12, 855.	6.3	10
305	The Genomic Structure and Chromosomal Location of the Human TR2 Orphan Receptor, a Member of the Steroid Receptor Superfamily. Endocrine, 1998, 8, 123-134.	2.2	9
306	Identification of an Essential cis-acting Element (TR2-PACE) in the 5' Promoter of Human TR2 Orphan Receptor Gene. Endocrine, 2000, 12, 89-98.	2.2	9

#	Article	IF	CITATIONS
307	Induction and Repression of Peroxisome Proliferator-Activated Receptor \hat{I}_{\pm} Transcription by Coregulator ARA70. Endocrine, 2003, 21, 139-146.	2.2	9
308	Stage dependent and androgen inductive expression of orphan receptor TR4 in rat testis. Biochemical and Biophysical Research Communications, 2006, 341, 464-469.	2.1	9
309	Androgen receptor decreases the cytotoxic effects of chemotherapeutic drugs in upper urinary tract urothelial carcinoma cells. Oncology Letters, 2013, 5, 1325-1330.	1.8	9
310	Olaparib and enzalutamide synergistically suppress HCC progression via the ARâ€mediated miRâ€146aâ€5p/BRCA1 signaling. FASEB Journal, 2020, 34, 5877-5891.	0.5	9
311	Suppressing BCL-XL increased the high dose androgens therapeutic effect to better induce the Enzalutamide-resistant prostate cancer autophagic cell death. Cell Death and Disease, 2021, 12, 68.	6.3	9
312	High-dose-androgen-induced autophagic cell death to suppress the Enzalutamide-resistant prostate cancer growth via altering the circRNA-BCL2/miRNA-198/AMBRA1 signaling. Cell Death Discovery, 2022, 8, 128.	4.7	9
313	Tissue-Specific Knockout of Androgen Receptor in Mice. Methods in Molecular Biology, 2011, 776, 275-293.	0.9	8
314	The Differential Effects of Anti-Diabetic Thiazolidinedione on Prostate Cancer Progression Are Linked to the TR4 Nuclear Receptor Expression Status. Neoplasia, 2015, 17, 339-347.	5.3	8
315	CREB/GSK-3β signaling pathway regulates the expression of TR4 orphan nuclear receptor gene. Molecular and Cellular Endocrinology, 2016, 423, 22-29.	3.2	8
316	Feedback Regulation between Orphan Nuclear Receptor TR2 and Human Papilloma Virus Type 16. Journal of Biological Chemistry, 2001, 276, 27316-27321.	3.4	7
317	Androgen and androgen receptor signals jamming monocyte/macrophage functions in premalignant		

#	Article	IF	CITATIONS
325	Urethral Dysfunction in Female Mice with Estrogen Receptor Î ² Deficiency. PLoS ONE, 2014, 9, e109058.	2.5	3
326	Differential Roles of Androgen Receptor in Prostate Development and Cancer Progression. , 2009, , 73-89.		3
327	Targeted activation of androgen receptor signaling in the periosteum improves bone fracture repair. Cell Death and Disease, 2022, 13, 123.	6.3	3
328	Preclinical studies show using enzalutamide is less effective in docetaxel-pretreated than in docetaxel-naÃ⁻ve prostate cancer cells. Aging, 2020, 12, 17694-17712.	3.1	2
329	Androgen effects on the solubility and conformational change of the androgen receptor in baculovirus expression system. , 1999, 195, 19-23.		1
330	Monoclonal anti-androgen receptor antibodies: production, characterization and potential diagnostic applications. Molecular and Cellular Biochemistry, 1999, 201, 131-140.	3.1	1
331	Physiological Functions of TR2 and TR4 Orphan Nuclear Receptor. , 2010, , 327-343.		1
332	Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells. Biochemical and Biophysical Research Communications, 2014, 452, 322-327.	2.1	1
333	Androgen Receptor in Prostate Cancer Progression. , 2008, , 129-146.		1
334	The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development. Cerebellum, 2008, 7, 1-9.	2.5	1
335	Actin monomer enhances supervillin-modulated androgen receptor transactivation. Biochemical and Biophysical Research Communications, 2004, 319, 393-393.	2.1	Ο
336	HORMONAL THERAPY FOR PROSTATE CANCER: CLINICAL AND EXPERIMENTAL EVIDENCE. , 2005, , 1-32.		0
337	Reply by the Authors. Urology, 2014, 84, 735.	1.0	0
338	A Festschrift in Honor of Edward M. Messing, MD, FACS. Bladder Cancer, 2018, 4, S1-S43.	0.4	0
339	Androgen Receptor Interacting Proteins: Co-Activators And Co-Repressors. , 2002, , 91-138.		Ο
340	Interaction of Cell Cycle Regulatory Proteins with the Androgen Receptor. , 2002, , 223-238.		0
341	The Expanded Poly-Q Length Within AR and AR Coregulator AIB1 and Their Clinical Implications. , 2002, , 245-264.		0
342	IL1 Dual Roles of Androgen Receptor Challenge the Androgen Deprivation Therapy of Prostate Cancer(The 97th Annual Meeting of the Japanese Urological Association). Japanese Journal of Urology, 2009, 100, 40.	0.1	0

#	Article	IF	CITATIONS
343	Androgen Receptor-Regulated Genes in Prostate Cancer Initiation Versus Metastasis. , 2013, , 155-176.		0