
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1681922/publications.pdf Version: 2024-02-01

FENC LIANC

#	Article	IF	CITATIONS
1	Aldehyde Dehydrogenase 1 Is a Tumor Stem Cell-Associated Marker in Lung Cancer. Molecular Cancer Research, 2009, 7, 330-338.	1.5	709
2	Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Laboratory Investigation, 2011, 91, 579-587.	1.7	361
3	ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. Laboratory Investigation, 2010, 90, 234-244.	1.7	321
4	Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. International Journal of Cancer, 2010, 127, 2870-2878.	2.3	320
5	Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer, 2010, 67, 170-176.	0.9	301
6	Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Modern Pathology, 2010, 23, 1157-1164.	2.9	237
7	Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Molecular Cancer, 2010, 9, 198.	7.9	235
8	Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer, 2011, 11, 374.	1.1	232
9	MicroRNAs as potential biomarkers in human solid tumors. Cancer Letters, 2013, 329, 125-136.	3.2	208
10	Aldehyde Dehydrogenase 1 A1–Positive Cell Population Is Enriched in Tumor-Initiating Cells and Associated with Progression of Bladder Cancer. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 327-337.	1.1	204
11	Interplay between the lung microbiome and lung cancer. Cancer Letters, 2018, 415, 40-48.	3.2	188
12	Up-regulation of 14-3-3ζ in Lung Cancer and Its Implication as Prognostic and Therapeutic Target. Cancer Research, 2007, 67, 7901-7906.	0.4	124
13	Small nucleolar RNAs in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 121-128.	3.3	106
14	Radiomics analysis of pulmonary nodules in lowâ€dose <scp>CT</scp> for early detection of lung cancer. Medical Physics, 2018, 45, 1537-1549.	1.6	104
15	Quantification of Plasma miRNAs by Digital PCR for Cancer Diagnosis. Biomarker Insights, 2013, 8, BMI.S13154.	1.0	103
16	Sputum microRNA Biomarkers for Identifying Lung Cancer in Indeterminate Solitary Pulmonary Nodules. Clinical Cancer Research, 2015, 21, 484-489.	3.2	96
17	Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. Journal of Cancer Research and Clinical Oncology, 2014, 140, 145-150.	1.2	93
18	Genetic Deletions in Sputum as Diagnostic Markers for Early Detection of Stage I Non–Small Cell Lung Cancer. Clinical Cancer Research, 2007, 13, 482-487.	3.2	91

#	Article	IF	CITATIONS
19	Analysis of MicroRNAs in Sputum to Improve Computed Tomography for Lung Cancer Diagnosis. Journal of Thoracic Oncology, 2014, 9, 33-40.	0.5	91
20	Small nucleolar RNA signatures of lung tumor-initiating cells. Molecular Cancer, 2014, 13, 104.	7.9	86
21	Fluorescent Metal Nanoshell Probe to Detect Single miRNA in Lung Cancer Cell. Analytical Chemistry, 2010, 82, 4464-4471.	3.2	82
22	Genomic Profiles in Stage I Primary Non Small Cell Lung Cancer Using Comparative Genomic Hybridization Analysis of cDNA Microarrays. Neoplasia, 2004, 6, 623-635.	2.3	78
23	A CRISPR Test for Detection of Circulating Nuclei Acids. Translational Oncology, 2019, 12, 1566-1573.	1.7	76
24	Characterization of microRNA transcriptome in lung cancer by nextâ€generation deep sequencing. Molecular Oncology, 2014, 8, 1208-1219.	2.1	73
25	Genomeâ€wide small nucleolar <scp>RNA</scp> expression analysis of lung cancer by nextâ€generation deep sequencing. International Journal of Cancer, 2015, 136, E623-9.	2.3	69
26	Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Laboratory Investigation, 2015, 95, 1197-1206.	1.7	67
27	Integrating DNA methylation and microRNA biomarkers in sputum for lung cancer detection. Clinical Epigenetics, 2016, 8, 109.	1.8	62
28	RNA silencing of S-phase kinase-interacting protein 2 inhibits proliferation and centrosome amplification in lung cancer cells. Oncogene, 2005, 24, 3409-3418.	2.6	61
29	Pim-1 kinase is a target of miR-486-5p and eukaryotic translation initiation factor 4E, and plays a critical role in lung cancer. Molecular Cancer, 2014, 13, 240.	7.9	59
30	Overexpression of S100A2 protein as a prognostic marker for patients with stage I non small cell lung cancer. International Journal of Cancer, 2005, 116, 285-290.	2.3	58
31	Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget, 2016, 7, 5131-5142.	0.8	57
32	A plasma miRNA signature for lung cancer early detection. Oncotarget, 2017, 8, 111902-111911.	0.8	49
33	Evaluation of lung flute in sputum samples for molecular analysis of lung cancer. Clinical and Translational Medicine, 2013, 2, 15.	1.7	48
34	A Plasma Long Noncoding RNA Signature for Early Detection of Lung Cancer. Translational Oncology, 2018, 11, 1225-1231.	1.7	48
35	Automated detection of genetic abnormalities combined with cytology in sputum is a sensitive predictor of lung cancer. Modern Pathology, 2008, 21, 950-960.	2.9	47
36	Genetically Abnormal Circulating Cells in Lung Cancer Patients: An Antigen-Independent Fluorescence <i>In situ</i> Hybridization–Based Case-Control Study. Clinical Cancer Research, 2010, 16, 3976-3987.	3.2	47

#	Article	IF	CITATIONS
37	Detection of Chromosome 11q13 Breakpoints by Interphase Fluorescence In Situ Hybridization. American Journal of Clinical Pathology, 2000, 114, 248-257.	0.4	46
38	Identification of ENO1 As a Potential Sputum Biomarker for Early-Stage Lung Cancer by Shotgun Proteomics. Clinical Lung Cancer, 2014, 15, 372-378.e1.	1.1	46
39	Small non-coding RNA biomarkers in sputum for lung cancer diagnosis. Molecular Cancer, 2016, 15, 36.	7.9	45
40	Surfactant Protein A Gene Deletion and Prognostics for Patients with Stage I Non–Small Cell Lung Cancer. Clinical Cancer Research, 2005, 11, 5417-5424.	3.2	43
41	A Panel of Sputum-Based Genomic Marker for Early Detection of Lung Cancer. Cancer Prevention Research, 2010, 3, 1571-1578.	0.7	43
42	Use of Interphase Fluorescence In Situ Hybridization as a Powerful Diagnostic Tool in Cytology. Diagnostic Molecular Pathology, 2002, 11, 47-57.	2.1	41
43	Magnetic enrichment of bronchial epithelial cells from sputum for lung cancer diagnosis. Cancer, 2008, 114, 275-283.	2.0	40
44	Combined genetic analysis of sputum and computed tomography for noninvasive diagnosis of non-small-cell lung cancer. Lung Cancer, 2009, 66, 58-63.	0.9	40
45	A classifier integrating plasma biomarkers and radiological characteristics for distinguishing malignant from benign pulmonary nodules. International Journal of Cancer, 2017, 141, 1240-1248.	2.3	38
46	Centrosomal abnormality is common in and a potential biomarker for bladder cancer. International Journal of Cancer, 2003, 106, 661-665.	2.3	35
47	Applications of microRNAs in the diagnosis and prognosis of lung cancer. Expert Opinion on Medical Diagnostics, 2012, 6, 197-207.	1.6	33
48	Microbiota Biomarkers for Lung Cancer. Diagnostics, 2021, 11, 407.	1.3	32
49	Fucosylation genes as circulating biomarkers for lung cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2109-2115.	1.2	30
50	MicroRNAâ€based biomarkers for diagnosis of nonâ€small cell lung cancer (NSCLC). Thoracic Cancer, 2020, 11, 762-768.	0.8	30
51	Comparison of molecular abnormalities in bronchial brushings and tumor touch preparations. Cancer, 2004, 105, 35-43.	2.0	29
52	Rapid Detection of IgH/BCL2 Rearrangement in Follicular Lymphoma by Interphase Fluorescence in Situ Hybridization with Bacterial Artificial Chromosome Probes. Journal of Molecular Diagnostics, 2002, 4, 144-149.	1.2	28
53	Circulating Neutrophil MicroRNAs as Biomarkers for the Detection of Lung Cancer. Biomarkers in Cancer, 2016, 8, BIC.S37333.	3.6	25
54	MicroRNA (miRNA) Profiling. Methods in Molecular Biology, 2016, 1381, 151-161.	0.4	25

#	Article	IF	CITATIONS
55	A prediction model for distinguishing lung squamous cell carcinoma from adenocarcinoma. Oncotarget, 2017, 8, 50704-50714.	0.8	22
56	An epigenetic classifier for early stage lung cancer. Clinical Epigenetics, 2018, 10, 68.	1.8	21
57	Sputum long non-coding RNA biomarkers for diagnosis of lung cancer. Cancer Biomarkers, 2019, 26, 219-227.	0.8	20
58	A CRISPR Test for Rapidly and Sensitively Detecting Circulating EGFR Mutations. Diagnostics, 2020, 10, 114.	1.3	20
59	Rapid and Sensitive Detection of SARS-CoV-2 Using Clustered Regularly Interspaced Short Palindromic Repeats. Biomedicines, 2021, 9, 239.	1.4	20
60	A Prediction Model Based on Biomarkers and Clinical Characteristics for Detection of Lung Cancer in Pulmonary Nodules. Translational Oncology, 2017, 10, 40-45.	1.7	19
61	A Direct Plasma miRNA Assay for Early Detection and Histological Classification of Lung Cancer. Translational Oncology, 2018, 11, 883-889.	1.7	19
62	An integromic signature for lung cancer early detection. Oncotarget, 2018, 9, 24684-24692.	0.8	18
63	Analysis of Lung Flute-collected Sputum for Lung Cancer Diagnosis. Biomarker Insights, 2015, 10, BMI.S26883.	1.0	16
64	A Non-Coding RNA Landscape of Bronchial Epitheliums of Lung Cancer Patients. Biomedicines, 2020, 8, 88.	1.4	16
65	A novel multiple FISH array for the detection of genetic aberrations in cancer. Laboratory Investigation, 2006, 86, 619-627.	1.7	11
66	Integrating Circulating Immunological and Sputum Biomarkers for the Early Detection of Lung Cancer. Biomarkers in Cancer, 2018, 10, 1179299X1875929.	3.6	11
67	Cytoplasm protein GFAP magnetic beads construction and application as cell separation target for brain tumors. Journal of Nanobiotechnology, 2020, 18, 169.	4.2	10
68	Autoantibodies against tumor-associated antigens in sputum as biomarkers for lung cancer. Translational Oncology, 2021, 14, 100991.	1.7	7
69	Identification of Potential Prognostic and Predictive Biomarkers for Immune-Checkpoint Inhibitor Response in Small Cell Lung Cancer. Medical Science Monitor, 2021, 27, e932275.	0.5	7
70	Integrated analysis of miRNAs and DNA methylation identifies miRâ€132â€3p as a tumor suppressor in lung adenocarcinoma. Thoracic Cancer, 2020, 11, 2112-2124.	0.8	6
71	Sensitive Detection of KRAS Mutations by Clustered Regularly Interspaced Short Palindromic Repeats. Diagnostics, 2021, 11, 125.	1.3	6
72	Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clinical Epigenetics, 2021, 13, 210.	1.8	6

#	Article	IF	CITATIONS
73	High-Throughput Detection of Multiple miRNAs and Methylated DNA by Droplet Digital PCR. Journal of Personalized Medicine, 2021, 11, 359.	1.1	4
74	Detection and Differentiation of SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses by CRISPR. Diagnostics, 2021, 11, 823.	1.3	4
75	Identification of a novel differentially methylated region adjacent to ATG16L2 in lung cancer cells using methyl-CpG binding domain protein-enriched genome sequencing. Genome, 2021, 64, 1-14.	0.9	4
76	Visual and morphological outcomes of vitreomacular traction syndrome in retinitis pigmentosa treated by vitrectomy. International Journal of Ophthalmology, 2018, 11, 1411-1415.	0.5	4
77	PCAT6 May Be a Whistler and Checkpoint Target for Precision Therapy in Human Cancers. Cancers, 2021, 13, 6101.	1.7	3
78	Cell-based reference samples designed with specific differences in microRNA biomarkers. BMC Biotechnology, 2018, 18, 17.	1.7	2
79	Cancer Stem Cells in Lung Cancer. , 2011, , 139-150.		0
80	Allogeneic corneoscleral limbus tissue transplantation for treatment of the necrosis in porphyria eye disease. International Journal of Ophthalmology, 2014, 7, 731-3.	0.5	0