Jonathan Houseley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1681366/publications.pdf

Version: 2024-02-01

39 papers 4,091 citations

430874 18 h-index 32 g-index

48 all docs 48 docs citations

48 times ranked

5319 citing authors

#	Article	IF	CITATIONS
1	Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Research, 2022, 50, 915-936.	14.5	10
2	Glyoxal fixation facilitates transcriptome analysis after antigen staining and cell sorting by flow cytometry. PLoS ONE, 2021, 16, e0240769.	2.5	19
3	Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq. PLoS Biology, 2021, 19, e3000886.	5.6	19
4	Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae. Nucleic Acids Research, 2020, 48, 7883-7898.	14.5	25
5	The adaptive potential of circular DNA accumulation in ageing cells. Current Genetics, 2020, 66, 889-894.	1.7	26
6	Protocols for Northern Analysis of Exosome Substrates and Other Noncoding RNAs. Methods in Molecular Biology, 2020, 2062, 83-103.	0.9	0
7	Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biology, 2019, 17, e3000471.	5.6	69
8	Transcription-induced formation of extrachromosomal DNA during yeast ageing., 2019, 17, e3000471.		0
9	Transcription-induced formation of extrachromosomal DNA during yeast ageing., 2019, 17, e3000471.		O
10	Transcription-induced formation of extrachromosomal DNA during yeast ageing., 2019, 17, e3000471.		0
11	Transcription-induced formation of extrachromosomal DNA during yeast ageing., 2019, 17, e3000471.		O
12	Transcription-induced formation of extrachromosomal DNA during yeast ageing., 2019, 17, e3000471.		0
13	Transcription-induced formation of extrachromosomal DNA during yeast ageing., 2019, 17, e3000471.		O
14	Gene expression hallmarks of cellular ageing. Biogerontology, 2018, 19, 547-566.	3.9	113
15	Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. ELife, 2018, 7, .	6.0	69
16	Aging yeast gain a competitive advantage on non-optimal carbon sources. Aging Cell, 2017, 16, 602-604.	6.7	21
17	RNA Binding by Histone Methyltransferases Set1 and Set2. Molecular and Cellular Biology, 2017, 37, .	2.3	31
18	Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biology, 2017, 15, e2001333.	5.6	123

#	Article	lF	Citations
19	Can aging be beneficial?. Aging, 2017, 9, 2016-2017.	3.1	2
20	TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biology, 2016, 17, 234.	8.8	78
21	Regulation of ribosomal DNA amplification by the TOR pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9674-9679.	7.1	74
22	The Nuclear Exosome Is Active and Important during Budding Yeast Meiosis. PLoS ONE, 2014, 9, e107648.	2.5	13
23	Unexpected DNA Loss Mediated by the DNA Binding Activity of Ribonuclease A. PLoS ONE, 2014, 9, e115008.	2.5	16
24	Endogenous RNA interference is driven by copy number. ELife, 2014, 3, e01581.	6.0	25
25	Resolution of Budding Yeast Chromosomes Using Pulsed-Field Gel Electrophoresis. Methods in Molecular Biology, 2013, 1054, 195-207.	0.9	22
26	Etoposide Induces Nuclear Re-Localisation of AID. PLoS ONE, 2013, 8, e82110.	2.5	4
27	Form and function of eukaryotic unstable non-coding RNAs. Biochemical Society Transactions, 2012, 40, 836-841.	3.4	6
28	Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Research, 2011, 39, 8778-8791.	14.5	42
29	Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. Nature Precedings, 2010, , .	0.1	3
30	Apparent Non-Canonical Trans-Splicing Is Generated by Reverse Transcriptase In Vitro. PLoS ONE, 2010, 5, e12271.	2.5	134
31	The Many Pathways of RNA Degradation. Cell, 2009, 136, 763-776.	28.9	978
32	A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster. Molecular Cell, 2008, 32, 685-695.	9.7	262
33	The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 239-246.	1.9	76
34	Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO Journal, 2007, 26, 4996-5006.	7.8	170
35	Muscleblind isoforms are functionally distinct and regulate \hat{l}_{\pm} -actinin splicing. Differentiation, 2007, 75, 427-440.	1.9	29
36	RNA-quality control by the exosome. Nature Reviews Molecular Cell Biology, 2006, 7, 529-539.	37.0	570

#	Article	IF	CITATIONS
37	Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO Journal, 2006, 25, 1534-1546.	7.8	121
38	Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Reports, 2006, 7, 205-211.	4.5	145
39	RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex. Cell, 2005, 121, 713-724.	28.9	786