
## Dingxiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679799/publications.pdf Version: 2024-02-01



Οινοχιλο Ζηλνο

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | AÂm6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy<br>response. NAR Cancer, 2022, 4, zcac010.                                                                               | 3.1  | 7         |
| 2  | RBM38 in cancer: role and mechanism. Cellular and Molecular Life Sciences, 2021, 78, 117-128.                                                                                                                        | 5.4  | 13        |
| 3  | Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics.<br>Acta Biomaterialia, 2021, 124, 72-87.                                                                        | 8.3  | 29        |
| 4  | Integrins regulate stemness in solid tumor: an emerging therapeutic target. Journal of Hematology and Oncology, 2021, 14, 177.                                                                                       | 17.0 | 41        |
| 5  | The spliceosome as a new therapeutic vulnerability in aggressive prostate cancer. Molecular and Cellular Oncology, 2020, 7, 1778420.                                                                                 | 0.7  | 3         |
| 6  | Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2020, 11, 2089.                                                          | 12.8 | 83        |
| 7  | Quantification of allelic differential expression using a simple Fluorescence primer PCR-RFLP-based method. Scientific Reports, 2019, 9, 6334.                                                                       | 3.3  | 1         |
| 8  | The DNA Methylation Status of Wnt and Tgfβ Signals Is a Key Factor on Functional Regulation of Skeletal Muscle Satellite Cell Development. Frontiers in Genetics, 2019, 10, 220.                                     | 2.3  | 15        |
| 9  | Gene expression profiling of porcine skeletal muscle satellite cells after poly(I:C) stimulation. Gene, 2019, 695, 113-121.                                                                                          | 2.2  | 2         |
| 10 | Histone 2B-GFP Label-Retaining Prostate Luminal Cells Possess Progenitor Cell Properties and Are<br>Intrinsically Resistant to Castration. Stem Cell Reports, 2018, 10, 228-242.                                     | 4.8  | 36        |
| 11 | Prostate Luminal Progenitor Cells in Development and Cancer. Trends in Cancer, 2018, 4, 769-783.                                                                                                                     | 7.4  | 54        |
| 12 | Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses.<br>Nature Communications, 2018, 9, 3600.                                                                            | 12.8 | 96        |
| 13 | "Splice―a way towards neuroendocrine prostate cancer. EBioMedicine, 2018, 35, 12-13.                                                                                                                                 | 6.1  | 4         |
| 14 | Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Seminars in<br>Cancer Biology, 2018, 52, 94-106.                                                                                 | 9.6  | 100       |
| 15 | MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nature Communications, 2017, 8, 14270.                                                              | 12.8 | 187       |
| 16 | Developing a Novel Two-Dimensional Culture System to Enrich Human Prostate Luminal Progenitors<br>that Can Function as a Cell of Origin for Prostate Cancer. Stem Cells Translational Medicine, 2017, 6,<br>748-760. | 3.3  | 19        |
| 17 | miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget, 2016, 7, 56628-56642.                        | 1.8  | 48        |
| 18 | Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells. Genomics<br>Data, 2016, 7, 318-320.                                                                                      | 1.3  | 0         |

DINGXIAO ZHANG

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Defining a Population of Stem-like Human Prostate Cancer Cells That Can Generate and Propagate Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 4505-4516.                                                             | 7.0  | 78        |
| 20 | NANOG reprograms prostate cancer cells to castration resistance via dynamically repressing and engaging the AR/FOXA1 signaling axis. Cell Discovery, 2016, 2, 16041.                                                                            | 6.7  | 41        |
| 21 | Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 2016, 7, 10798.                                                                                               | 12.8 | 166       |
| 22 | Transcriptome profiling links the intrinsic properties of human prostate basal cells to prostate cancer aggressiveness. Molecular and Cellular Oncology, 2016, 3, e1168508.                                                                     | 0.7  | 0         |
| 23 | Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSAâ´´/lo castration-resistant cells. Oncotarget, 2016, 7, 14220-14240.               | 1.8  | 17        |
| 24 | Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle, 2014, 13, 1798-1810.                                                                                                                                | 2.6  | 22        |
| 25 | Ndc80 Regulates Meiotic Spindle Organization, Chromosome Alignment, and Cell Cycle Progression in<br>Mouse Oocytes. Microscopy and Microanalysis, 2011, 17, 431-439.                                                                            | 0.4  | 34        |
| 26 | Regulation of Maternal Gene Expression by MEK/MAPK and MPF Signaling in Porcine Oocytes During In<br>Vitro Meiotic Maturation. Journal of Reproduction and Development, 2011, 57, 49-56.                                                        | 1.4  | 43        |
| 27 | Arginine and Glutamate-rich 1 (ARGLU1) Interacts with Mediator Subunit 1 (MED1) and Is Required for<br>Estrogen Receptor-mediated Gene Transcription and Breast Cancer Cell Growth. Journal of Biological<br>Chemistry, 2011, 286, 17746-17754. | 3.4  | 55        |
| 28 | Molecular characterization and polyadenylationâ€regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotes. Molecular Reproduction and Development, 2010, 77, 38-50.                                                   | 2.0  | 24        |
| 29 | Involvement of ER–calreticulin–Ca <sup>2+</sup> signaling in the regulation of porcine oocyte<br>meiotic maturation and maternal gene expression. Molecular Reproduction and Development, 2010, 77,<br>462-471.                                 | 2.0  | 26        |
| 30 | A link between the interleukinâ€6/Stat3 antiâ€apoptotic pathway and microRNAâ€21 in preimplantation mouse<br>embryos. Molecular Reproduction and Development, 2009, 76, 854-862.                                                                | 2.0  | 39        |
| 31 | Involvement of polyadenylation status on maternal gene expression during in vitro maturation of porcine oocytes. Molecular Reproduction and Development, 2009, 76, 881-889.                                                                     | 2.0  | 19        |
| 32 | Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos.<br>Biochemical and Biophysical Research Communications, 2009, 379, 390-394.                                                                       | 2.1  | 37        |
| 33 | Chromosomal localization, spatio-temporal distribution and polymorphism of the porcine tripartite motif-containing 55 <i>(TRIM55) </i> gene. Cytogenetic and Genome Research, 2006, 114, 93B-93B.                                               | 1.1  | 6         |