Nicolas Brosse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679777/publications.pdf

Version: 2024-02-01

81900 79698 6,307 151 39 73 citations g-index h-index papers 159 159 159 6443 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biorefining of Aucoumea klaineana wood: Impact of steam explosion on the composition and ultrastructure the cell wall. Industrial Crops and Products, 2022, 177, 114432.	5.2	12
2	A recent advancement on preparation, characterization and application of nanolignin. International Journal of Biological Macromolecules, 2022, 200, 303-326.	7.5	29
3	Preparation and characterization of formaldehyde-free wood adhesive from mangrove bark tannin. International Journal of Adhesion and Adhesives, 2022, 114, 103094.	2.9	7
4	Lignin containing micro and nano-fibrillated cellulose obtained by steam explosion: Comparative study between different processes. Carbohydrate Polymers, 2022, 290, 119460.	10.2	9
5	Interfacial properties of windmill palm (Trachycarpus fortunei) fiber reinforced laminated veneer lumber (LVL) composites under high voltage electrostatic field (HVEF). Industrial Crops and Products, 2022, 180, 114795.	5.2	6
6	Effect of highly efficient steam explosion treatment on beech, poplar and spruce solid wood physicochemical and permeable performances. Industrial Crops and Products, 2022, 182, 114901.	5.2	16
7	A low-cost environmentally friendly approach to isolate lignin containing micro and nanofibrillated cellulose from Eucalyptus globulus bark by steam explosion. Cellulose, 2022, 29, 5593-5607.	4.9	4
8	Steam explosion of Aucoumea klaineana sapwood: Membrane separation of acetylated hemicelluloses. Carbohydrate Research, 2022, 519, 108622.	2.3	4
9	Renewable phosphorous-based flame retardant for lignocellulosic fibers. Industrial Crops and Products, 2022, 186, 115265.	5.2	19
10	Interfacial improvement of poly (lactic acid)/tannin acetate composites via radical initiated polymerization. Industrial Crops and Products, 2021, 159, 113068.	5.2	13
11	The Effect of the Aqueous Enzymatic Extraction Method towards Momordica charantia Seed Oil and Its Lignocellulosic Biomass. Walailak Journal of Science and Technology, 2021, 18, .	0.5	0
12	Industrial Ramie Growing on Reclaimed Ion-Adsorption Rare Earth Elements Mine Tailings in Southern China: Defibration and Fibers Quality. Waste and Biomass Valorization, 2021, 12, 6255-6260.	3.4	5
13	Cascading Recycling of Wood Waste: A Review. Polymers, 2021, 13, 1752.	4.5	58
14	The â€~Shellome' of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization. Frontiers in Genetics, 2021, 12, 674539.	2.3	10
15	Carbon Monoliths with Hierarchical Porous Structure for All-Vanadium Redox Flow Batteries. Batteries, 2021, 7, 55.	4.5	7
16	Extraction of acetylated glucuronoxylans and glucomannans from Okoume (Aucoumea klaineana) Tj ETQq0 0 0 r	rgBT/Over 5.2	ျဝင်နဲ့ 10 Tf 50
17	Eco-friendly method to improve the durability of different bamboo (Phyllostachys pubescens, Moso) sections by silver electrochemical treatment. Industrial Crops and Products, 2021, 172, 113994.	5.2	13
18	Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches. Frontiers in Chemistry, 2021, 9, 705358.	3.6	42

#	Article	IF	CITATIONS
19	Steam Explosion of Beech Wood: Effect of the Particle Size on the Xylans Recovery. Waste and Biomass Valorization, 2020, 11, 625-633.	3.4	23
20	Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Conversion and Biorefinery, 2020, 10, 1-13.	4.6	19
21	Elaboration of hemicellulose-based films: Impact of the extraction process from spruce wood on the film properties. Carbohydrate Research, 2020, 497, 108111.	2.3	7
22	Water Extraction of Tannins from Aleppo Pine Bark and Sumac Root for the Production of Green Wood Adhesives. Molecules, 2020, 25, 5041.	3.8	5
23	Green mode synthesis of silver nanoparticles using Vitis vinifera's tannin and screening its antimicrobial activity / apoptotic potential versus cancer cells. Materials Today Communications, 2020, 25, 101511.	1.9	31
24	Production and characterization of rigid polyurethane foam by oxypropylation of organosolv lignin extracted from exhausted olive pomace. Journal of Polymer Research, 2020, 27, 1.	2.4	14
25	Editorial: Recent Trends in Preparation, Characterization and Applications of Nanocellulose. Frontiers in Chemistry, 2020, 8, 594379.	3.6	6
26	Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry, 2020, 8, 392.	3.6	586
27	Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges. Polymers, 2020, 12, 1234.	4.5	79
28	Facile preparation of high anti-fungal performance wood by high voltage electrostatic field (HVEF). Journal of Cleaner Production, 2020, 260, 120947.	9.3	11
29	Lignin-First Integrated Steam Explosion Process for Green Wood Adhesive Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 5380-5392.	6.7	35
30	Preparation and characterizations of oil palm fronds cellulose nanocrystal (OPF-CNC) as reinforcing filler in epoxy-Zn rich coating for mild steel corrosion protection. International Journal of Biological Macromolecules, 2020, 153, 385-398.	7. 5	23
31	Characterization and 3D printability of poly (lactic acid)/acetylated tannin composites. Industrial Crops and Products, 2020, 149, 112320.	5.2	42
32	Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 2020, 162, 985-1024.	7. 5	223
33	One-step compatibilization of poly(lactic acid) and tannin via reactive extrusion. Materials and Design, 2020, 191, 108603.	7.0	34
34	Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization. Waste and Biomass Valorization, 2020, 11, 6541-6553.	3.4	68
35	Toward the cottonization of hemp fibers by steam explosion. Flame-retardant fibers. Industrial Crops and Products, 2020, 151, 112242.	5.2	20
36	Effect of vacuum hot pressing on the bonding quality and heat transfer performance of plywood. European Journal of Wood and Wood Products, 2020, 78, 441-447.	2.9	2

#	Article	IF	CITATIONS
37	Polypropylene Blend with Polyphenols through Dynamic Vulcanization: Mechanical, Rheological, Crystalline, Thermal, and UV Protective Property. Polymers, 2019, 11, 1108.	4.5	27
38	Steam explosion process for the selective extraction of hemicelluloses polymers from spruce sawdust. Industrial Crops and Products, 2019, 141, 111757.	5.2	43
39	Variation of surface and bonding properties among four wood species induced by a high voltage electrostatic field (HVEF). Holzforschung, 2019, 73, 957-965.	1.9	19
40	Reinforced lignin-phenol-glyoxal (LPG) wood adhesives from coconut husk. International Journal of Biological Macromolecules, 2019, 141, 185-196.	7.5	42
41	Microwave-assisted extraction of high-molecular-weight hemicelluloses from spruce wood. Comptes Rendus Chimie, 2019, 22, 574-584.	0.5	21
42	Steam explosion pretreatment of willow grown on phytomanaged soils for bioethanol production. Industrial Crops and Products, 2019, 140, 111722.	5.2	34
43	Lignin-Based Carbon Nanofibers as Electrodes for Vanadium Redox Couple Electrochemistry. Nanomaterials, 2019, 9, 106.	4.1	25
44	High voltage electric discharges treatment for high molecular weight hemicelluloses extraction from spruce. Carbohydrate Polymers, 2019, 222, 115019.	10.2	17
45	Robust and durable bonding performance of bamboo induced by high voltage electrostatic field treatment. Industrial Crops and Products, 2019, 137, 149-156.	5.2	26
46	Homolytic and Heterolytic Cleavage of \hat{l}^2 -Ether Linkages in Hardwood Lignin by Steam Explosion. Journal of Agricultural and Food Chemistry, 2019, 67, 5989-5996.	5.2	29
47	The structural characterization and antioxidant properties of oil palm fronds lignin incorporated with p-hydroxyacetophenone. International Journal of Biological Macromolecules, 2019, 130, 947-957.	7.5	25
48	Comparison of Bonding Performance Between Plywood and Laminated Veneer Lumber Induced by High Voltage Electrostatic Field MATEC Web of Conferences, 2019, 275, 01013.	0.2	2
49	Dynamically Cross-Linked Tannin as a Reinforcement of Polypropylene and UV Protection Properties. Polymers, 2019, 11, 102.	4.5	28
50	Influence of high voltage electrostatic field (HVEF) on bonding characteristics of Masson (Pinus) Tj ETQq0 0 0 rg	BT <u>/</u> Qverlo	ock 10 Tf 50 2
51	Effect of Different Prehydrolysis Processes on Lignin Extractability of Coconut Husk Fibres. Journal of Physical Science, 2019, 30, 207-219.	0.9	4
52	The In-silico Studies of Benzylidene Indanone Derivatives Towards Dengue Virus Type-2 NS2B/NS3 Protease. Journal of Physical Science, 2019, 30, 191-198.	0.9	1
53	Production of melamine formaldehyde resins used in impregnation by incorporation of ethylene glycol and caprolactam with high flexibility, storage stability, and low formaldehyde content. BioResources, 2019, 14, 9916-9927.	1.0	5
54	Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. International Journal of Biological Macromolecules, 2018, 113, 1266-1272.	7.5	48

#	Article	IF	CITATIONS
55	Toward the cottonization of hemp fibers by steam explosion – Part 1: defibration and morphological characterization. Textile Reseach Journal, 2018, 88, 1047-1055.	2.2	22
56	Condensed Tannins from Mangrove and Grape Pomace as Renewable Corrosion Inhibitors and Wood Adhesive. Journal of Advanced Chemical Engineering, 2018, 08, .	0.1	3
57	Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building blocks. Industrial Crops and Products, 2018, 123, 698-706.	5.2	10
58	Biochemical characterization of the skeletal matrix of the massive coral, Porites australiensis $\hat{a} \in \text{``The saccharide moieties and their localization. Journal of Structural Biology, 2018, 203, 219-229.}$	2.8	11
59	Acetyl Groups in Typha capensis: Fate of Acetates during Organosolv and Ionosolv Pulping. Polymers, 2018, 10, 619.	4.5	7
60	Organosolv Processes. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 153-176.	1.1	39
61	Modification of oil palm fronds lignin by incorporation of m-cresol for improving structural and antioxidant properties. International Journal of Biological Macromolecules, 2017, 104, 251-260.	7. 5	22
62	Pretreatment of trace element-enriched biomasses grown on phytomanaged soils for bioethanol production. Industrial Crops and Products, 2017, 107, 63-72.	5.2	32
63	Impact of ultrasounds and high voltage electrical discharges on physico-chemical properties of rapeseed straw's lignin and pulps. Bioresource Technology, 2017, 237, 11-19.	9.6	28
64	A Multitechnique Characterization of Lignin Softening and Pyrolysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 6940-6949.	6.7	70
65	Pretreatment optimization from rapeseed straw and lignin characterization. Industrial Crops and Products, 2017, 95, 643-650.	5.2	33
66	Chemical Characterization of Non-Saccharidic and Saccharidic Components of Rapeseed Hulls and Sunflower Shells. BioResources, 2017, 12, .	1.0	6
67	Selective Biodegradation of Grape Pomace Tannins by Aspergillus niger and Application in Wood Adhesive. BioResources, 2017, 13 , .	1.0	2
68	Tannins for Wood Adhesives, Foams and Composites., 2017,, 197-220.		6
69	Impact of Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate Mediated Extraction on Lignin Features. Green and Sustainable Chemistry, 2017, 07, 114-140.	1.2	5
70	Pulsed Electric Fields and High-Voltage Electrical Discharges-Assisted Extraction of Valuable Biocompounds and Biopolymers from Rapeseed By-Products., 2017,, 2883-2898.		0
71	Organosolv Lignin-Based Wood Adhesive. Influence of the Lignin Extraction Conditions on the Adhesive Performance. Polymers, 2016, 8, 340.	4.5	27
72	Extraction and Characterization of Fibers from Palm Tree. BioResources, 2016, 11, .	1.0	15

#	Article	IF	CITATIONS
7 3	Characterization of biomass char formation investigated by advanced solid state NMR. Carbon, 2016, 108, 165-177.	10.3	54
74	Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass and Bioenergy, 2016, 95, 92-98.	5.7	21
7 5	Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. International Journal of Biological Macromolecules, 2016, 92, 11-19.	7.5	100
76	Effect of Potassium on the Mechanisms of Biomass Pyrolysis Studied using Complementary Analytical Techniques. ChemSusChem, 2016, 9, 863-872.	6.8	55
77	Innovative physically-assisted soda fractionation of rapeseed hulls for better recovery of biopolymers. RSC Advances, 2016, 6, 19833-19842.	3.6	10
78	Mechanisms of biomass pyrolysis studied by combining a fixed bed reactor with advanced gas analysis. Journal of Analytical and Applied Pyrolysis, 2016, 117, 334-346.	5.5	61
79	The capability of ultrafiltrated alkaline and organosolv oil palm (Elaeis guineensis) fronds lignin as green corrosion inhibitor for mild steel in 0.5 M HCl solution. Measurement: Journal of the International Measurement Confederation, 2016, 78, 90-103.	5.0	103
80	Preparation and Characterization of Lignin Polyols from the Residues of Oil Palm Empty Fruit Bunch. BioResources, 2015, 10 , .	1.0	28
81	Enhanced properties of oil palm fronds (OPF) lignin fractions produced via tangential ultrafiltration technique. Industrial Crops and Products, 2015, 66, 1-10.	5.2	36
82	Lophira lanceolata seed oil extraction method (ancestral or modern) modifies the properties of the oil. Industrial Crops and Products, 2015, 67, 49-54.	5.2	12
83	High Resolution Solid State 2D NMR Analysis of Biomass and Biochar. Analytical Chemistry, 2015, 87, 843-847.	6.5	46
84	Characterization of Miscanthus pyrolysis by DRIFTs, UV Raman spectroscopy and mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2015, 113, 402-411.	5.5	31
85	Characterization of cellulose prepared from some Algerian lignocellulosic materials (zeen oak wood,) Tj ETQq1 1 C).784314 i 2.9	rgBT /Overlo
86	Improved corrosion inhibition of mild steel by chemically modified lignin polymers from Elaeis guineensis agricultural waste. Materials Chemistry and Physics, 2015, 163, 201-212.	4.0	50
87	Pretreatment of miscanthus using 1,3-dimethyl-imidazolium methyl phosphonate (DMIMMPh) ionic liquid for glucose recovery and ethanol production. RSC Advances, 2015, 5, 61455-61464.	3.6	21
88	Antioxidant and anticorrosive properties of oil palm frond lignins extracted with different techniques. Annals of Forest Science, 2015, 72, 17-26.	2.0	26
89	Enhancement of mechanical strength of particleboard using environmentally friendly pine (Pinus) Tj ETQq $1\ 1\ 0.78$	4314 rgB ⁻ 2.0	T /Qverlock
90	Editorial: Biofuels. Energy Conversion and Management, 2014, 88, 1077.	9.2	1

#	Article	IF	CITATIONS
91	Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers, 2014, 104, 223-230.	10.2	259
92	Investigation on the structure and antioxidant properties of modified lignin obtained by different combinative processes of oil palm fronds (OPF) biomass. Industrial Crops and Products, 2014, 52, 544-551.	5.2	62
93	Optimization of polyphenols extraction from grape residues in water medium. Industrial Crops and Products, 2014, 52, 18-22.	5.2	58
94	Effect of pyrolysis temperature on the property modifications of lignocellulosic biomass and its components. , 2014, , .		О
95	UPLC method for the determination of vitamin E homologues and derivatives in vegetable oils, margarines and supplement capsules using pentafluorophenyl column. Talanta, 2014, 130, 299-306.	5.5	40
96	Impact of catalytic oil palm fronds (OPF) pulping on organosolv lignin properties. Polymer Degradation and Stability, 2014, 109, 33-39.	5.8	24
97	Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis) Tj ETQq1 1 0.78 Products, 2013, 49, 23-32.	4314 rgB1 5.2	「/Overlock 98
98	Compositions and chemical variability of grape pomaces from French vineyard. Industrial Crops and Products, 2013, 43, 251-254.	5.2	94
99	Effect of different pretreatments on delignification pattern and enzymatic hydrolysability of miscanthus, oil palm biomass and typha grass. Bioresource Technology, 2013, 135, 82-88.	9.6	43
100	Impact of the lignin structure of three lignocellulosic feedstocks on their organosolv delignification. Effect ofÂcarbonium ion scavengers. Biomass and Bioenergy, 2013, 52, 151-158.	5.7	24
101	Revealing the chemistry of biomass pyrolysis by means of tunable synchrotron photoionisation-mass spectrometry. RSC Advances, 2013, 3, 4786.	3.6	54
102	Investigation of the Effects of Ionic Liquid 1-Butyl-3-methylimidazolium Acetate Pretreatment and Enzymatic Hydrolysis of Typha capensis. Energy & Enzymatic Hydrolysis of Typha capensis. Energy & Enzymatic Hydrolysis of Typha capensis.	5.1	15
103	Rapid Optimization of Typha Grass Organosolv Pretreatments Using Parallel Microwave Reactors for Ethanol Production. Industrial & Engineering Chemistry Research, 2013, 52, 1691-1697.	3.7	9
104	In Situ Analysis of Biomass Pyrolysis by High Temperature Rheology in Relations with ¹ H NMR. Energy & Description of the support o	5.1	53
105	ETHANOL ORGANOSOLV PRETREATMENT OF TYPHA CAPENSIS FOR BIOETHANOL PRODUCTION AND CO-PRODUCTS. BioResources, 2012, 7, .	1.0	9
106	<i>Miscanthus</i> : a fastâ€growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 2012, 6, 580-598.	3.7	360
107	The Origin of Molecular Mobility During Biomass Pyrolysis as Revealed by Inâ€situ ¹ Hâ€NMR Spectroscopy. ChemSusChem, 2012, 5, 1258-1265.	6.8	30
108	Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive. Industrial Crops and Products, 2012, 40, 13-20.	5.2	137

#	Article	IF	CITATIONS
109	Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: Effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Bioresource Technology, 2012, 112, 156-163.	9.6	102
110	Effect of the Pre-Treatment Severity on the Antioxidant Properties of Ethanol Organosolv Miscanthus x giganteus Lignin. Natural Resources, 2012, 03, 29-34.	0.4	14
111	Extraction, Characterization and Utilization of Organosolv Miscanthus Lignin for the Conception of Environmentally Friendly Mixed Tannin/Lignin Wood Resins. Journal of Adhesion Science and Technology, 2011, 25, 1549-1560.	2.6	32
112	Optimization of Galactoglucomannans and Acidic Arabinans Recovery in Softwood. Industrial & Engineering Chemistry Research, 2011, 50, 14217-14220.	3.7	7
113	Extraction of condensed tannins from grape pomace for use as wood adhesives. Industrial Crops and Products, 2011, 33, 253-257.	5.2	84
114	Evaluation of grape stalks as a bioresource. Industrial Crops and Products, 2011, 33, 200-204.	5.2	92
115	Condensed tannins extraction from grape pomace: Characterization and utilization as wood adhesives for wood particleboard. Industrial Crops and Products, 2011, 34, 907-914.	5.2	59
116	Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 2011, 35, 4025-4033.	5.7	82
117	Extraction of Polyphenolics from Lignocellulosic Materials and Agricultural Byproducts for the Formulation of Resin for Wood Adhesives. Journal of Biobased Materials and Bioenergy, 2011, 5, 460-465.	0.3	6
118	Biomass to Bioethanol: Initiatives of the Future for Lignin. ISRN Materials Science, 2011, 2011, 1-10.	1.0	39
119	Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 2010, 95, 997-1003.	5.8	207
120	Investigation of the chemical modifications of beech wood lignin during heat treatment. Polymer Degradation and Stability, 2010, 95, 1721-1726.	5.8	131
121	Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresource Technology, 2010, 101, 9321-9329.	9.6	146
122	Efficient preparation of N $\hat{a} \in ^3$ -1H-isoindole-1,3-diylidenedicarbohydrazides via 1,1,3-trichloro-1H-isoindole, and their characterization. Tetrahedron, 2009, 65, 6218-6225.	1.9	10
123	Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 2009, 94, 1632-1638.	5.8	414
124	Pretreatment of <i>Miscanthus x giganteus</i> Using the Ethanol Organosolv Process for Ethanol Production. Industrial & Engineering Chemistry Research, 2009, 48, 8328-8334.	3.7	162
125	Solid phase synthesis of N-aminodipeptides in high optical purity. Tetrahedron Letters, 2008, 49, 156-158.	1.4	8
126	Influence of the gelator structure and solvent on the organisation and chirality of self-assembling fibrillar networks. New Journal of Chemistry, 2008, 32, 1131.	2.8	33

#	Article	IF	CITATIONS
127	Di-tert-butyl 2-benzoylhydrazine-1,1-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o205-o205.	0.2	2
128	Synthesis of \hat{Nl}_{\pm} -Z, \hat{Nl}^{2} -Fmoc or Boc protected \hat{l}_{\pm} -hydrazinoacids and study of the coupling reaction in solution of \hat{Nl}_{\pm} -Z- \hat{l}_{\pm} -hydrazinoesters. Tetrahedron, 2007, 63, 2223-2234.	1.9	18
129	Solid-phase synthesis of hydrazinopeptides in Boc and Fmoc strategies monitored by HR-MAS NMR. Tetrahedron, 2007, 63, 9635-9641.	1.9	13
130	N′-(3-Amino-1H-isoindol-1-ylidene)-R-carbohydrazides and Their Amide-Type Isomerism. European Journal of Organic Chemistry, 2006, 2006, 2833-2842.	2.4	11
131	N-(tert-Butyloxycarbonylamino)phthalimide. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o934-o935.	0.2	1
132	Preparation of Multiply Protected Alkylhydrazine Derivatives by Mitsunobu and PTC Approaches ChemInform, 2004, 35, no.	0.0	0
133	Liquid and Solid Phase Syntheses of Orthogonally Protected α-Hydrazinoacid Derivatives ChemInform, 2004, 35, no.	0.0	0
134	Liquid and solid phase syntheses of orthogonally protected α-hydrazinoacid derivatives. Tetrahedron Letters, 2004, 45, 3569-3572.	1.4	25
135	A family of strong low-molecular-weight organogelators based on aminoacid derivatives. Tetrahedron Letters, 2004, 45, 9521-9524.	1.4	40
136	Preparation of Multiply Protected Alkylhydrazine Derivatives by Mitsunobu and PTC Approaches. European Journal of Organic Chemistry, 2003, 2003, 4757-4764.	2.4	28
137	Use of N-Acyl or N-Alkyloxycarbonyl-aminotetrachlorophthalimides for the Preparation of Alkylhydrazines via the Mitsunobu Protocol ChemInform, 2003, 34, no.	0.0	0
138	USE OFN-ACYL ORN-ALKYLOXYCARBONYL-AMINOTETRACHLOROPHTHALIMIDES FOR THE PREPARATION OF ALKYLHYDRAZINES VIA THE MITSUNOBU PROTOCOL. Synthetic Communications, 2002, 32, 3603-3610.	2.1	13
139	Very efficient one-pot conversion of N-aminophthalimide derivatives into the corresponding N-amino-di-tert-butyl imidodicarbonates. Tetrahedron Letters, 2002, 43, 249-251.	1.4	17
140	Original and efficient method for the preparation of N-aminoamide pseudodipeptides in high optical purity. Tetrahedron Letters, 2002, 43, 2009-2011.	1.4	15
141	A New Synthetic Route to Protected α-Hydrazinoesters in High Optical Purity Using the Mitsunobu Protocol. Journal of Organic Chemistry, 2001, 66, 2869-2873.	3.2	44
142	N-tert-Butoxycarbonylaminophthalimide, a versatile reagent for the conversion of alcohols into alkylated tert-butylcarbazates or hydrazines via the Mitsunobu protocol. Tetrahedron Letters, 2000, 41, 205-207.	1.4	17
143	New Synthesis of 1,1-Substituted Hydrazines by Alkylation of N-Acylor- or N-alkyloxycarbonylaminophthalimide Using the Mitsunobu Protocol. Journal of Organic Chemistry, 2000, 65, 4370-4374.	3.2	60
144	Synthesis of N-(protected)aminophthalimides: application to the synthesis of singly labelled isoniazid. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3685-3688.	0.9	12

#	Article	lF	CITATIONS
145	A Convenient Synthesis of Singly 15N-Labeled Isoniazid. Synthesis, 1998, 1998, 269-270.	2.3	5
146	New Access to Prostanoids Like from Easy Avaliable Starting Materials. Chemistry Letters, 1995, 24, 193-194.	1.3	1
147	Easy Access to Cyclopentanoid Structures. 21Transposition of Tricyclo[m.n.0.02,m+1]alca-2,3,m+2-triol Derivatives. Synthetic Communications, 1995, 25, 157-165.	2.1	3
148	Easy access to cyclopentanoid structures. 1. Preparation and transposition of tricyclo[m.n.0.02,m+1]alca-2,3,m + 2-triol derivatives. Journal of Organic Chemistry, 1993, 58, 4572-4578.	3.2	19
149	New easy access to cyclopentanoid structures. Tetrahedron Letters, 1991, 32, 3069-3070.	1.4	9
150	Stereospecific emulsion polymerization of 2-phenyl-1,3-butadiene. European Polymer Journal, 1991, 27, 747-749.	5.4	6
151	Effect of Combinative Pretreatments on Cellulose-to-Glucose Conversion of Empty Palm Fruit Bunch (EFB). Journal of Food Science and Technology Nepal, 0, 7, 81-85.	0.2	0