Michael J Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Current and New Optical Techniques for Coral Monitoring. Oceans, 2022, 3, 30-45.	1.3	12
2	New Insights from the High-Resolution Monitoring of Microalgae–Virus Infection Dynamics. Viruses, 2022, 14, 466.	3.3	1
3	A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Applied and Environmental Microbiology, 2022, 88, e0025522.	3.1	2
4	Biochemical and Elemental Composition of Pelagic Sargassum Biomass Harvested across the Caribbean. Phycology, 2022, 2, 204-215.	3.6	13
5	Antiviral Potential of Algal Metabolites—A Comprehensive Review. Marine Drugs, 2021, 19, 94.	4.6	29
6	Novel Capsular Polysaccharide from Lobochlamys segnis. Polysaccharides, 2021, 2, 121-137.	4.8	1
7	A Non-Destructive, Tuneable Method to Isolate Live Cells for High-Speed AFM Analysis. Microorganisms, 2021, 9, 680.	3.6	6
8	Potential for Chemistry in Multidisciplinary, Interdisciplinary, and Transdisciplinary Teaching Activities in Higher Education. Journal of Chemical Education, 2021, 98, 1124-1145.	2.3	26
9	Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae. Environments - MDPI, 2021, 8, 34.	3.3	14
10	Efficient dilution-to-extinction isolation of novel virus–host model systems for fastidious heterotrophic bacteria. ISME Journal, 2021, 15, 1585-1598.	9.8	26
11	An energy and resource efficient alkaline flocculation and sedimentation process for harvesting of Chromochloris zofingiensis biomass. Bioresource Technology Reports, 2020, 9, 100358.	2.7	3
12	Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability. Bioresource Technology, 2020, 303, 122862.	9.6	51
13	Saltwater based fractionation and valorisation of macroalgae. Journal of Chemical Technology and Biotechnology, 2020, 95, 2098-2109.	3.2	11
14	Engineering the unicellular alga <i>Phaeodactylum tricornutum</i> for highâ€value plant triterpenoid production. Plant Biotechnology Journal, 2019, 17, 75-87.	8.3	82
15	Making light work of heavy metal contamination: the potential for coupling bioremediation with bioenergy production. Journal of Chemical Technology and Biotechnology, 2019, 94, 3064-3072.	3.2	27
16	Hydrothermal liquefaction of macroalgae for the production of renewable biofuels. Biofuels, Bioproducts and Biorefining, 2019, 13, 1483-1504.	3.7	27
17	A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustainable Energy and Fuels, 2019, 3, 292-301.	4.9	41
18	Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima. Algal Research, 2019, 38, 101411.	4.6	31

3

#	Article	IF	CITATIONS
19	Sustainability and life cycle assessment (LCA) of macroalgae-derived single cell oils. Journal of Cleaner Production, 2019, 232, 1272-1281.	9.3	27
20	Co-liquefaction of Macroalgae with Common Marine Plastic Pollutants. ACS Sustainable Chemistry and Engineering, 2019, 7, 6769-6781.	6.7	41
21	Improving electrocoagulation floatation for harvesting microalgae. Algal Research, 2019, 39, 101446.	4.6	37
22	Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virology Journal, 2019, 16, 15.	3.4	99
23	Analysis of Seaweeds from South West England as a Biorefinery Feedstock. Applied Sciences (Switzerland), 2019, 9, 4456.	2.5	13
24	The Microalgae Biorefinery: A Perspective on the Current Status and Future Opportunities Using Genetic Modification. Applied Sciences (Switzerland), 2019, 9, 4793.	2.5	52
25	Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ, 2019, 7, e6800.	2.0	109
26	The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring. Ocean Engineering, 2018, 147, 333-339.	4.3	69
27	Algal Viruses: The (Atomic) Shape of Things to Come. Viruses, 2018, 10, 490.	3.3	2
28	Effects of cell motility and morphology on the rheology of algae suspensions. Journal of Applied Phycology, 2017, 29, 1145-1157.	2.8	14
29	Organic waste as a sustainable feedstock for platform chemicals. Faraday Discussions, 2017, 202, 175-195.	3.2	92
30	Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. Algal Research, 2017, 25, 90-100.	4.6	99
31	Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom. Biomass and Bioenergy, 2017, 107, 244-253.	5.7	42
32	An Alternative Method to Niskin Sampling for Molecular Analysis of the Marine Environment. Journal of Marine Science and Engineering, 2017, 5, 22.	2.6	2
33	Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses, 2017, 9, 43.	3.3	50
34	Development of Vortex Bioreactor Technology for Decentralised Water Treatment. , 2017, , .		0
35	Coccolithoviruses: A Review of Cross-Kingdom Genomic Thievery and Metabolic Thuggery. Viruses, 2017, 9, 52.	3.3	27

Feedstocks for Aviation Biofuels. , 2016, , 17-34.

#	Article	IF	CITATIONS
37	Intragenus competition between coccolithoviruses: an insight on how a select few can come to dominate many. Environmental Microbiology, 2016, 18, 133-145.	3.8	18
38	Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresource Technology, 2016, 207, 166-174.	9.6	52
39	Characterisation of algicidal bacterial exometabolites against the lipid-accumulating diatom Skeletonema sp Algal Research, 2016, 13, 1-6.	4.6	15
40	Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal recovery from microalgae cultivated on acid mine drainage. Fuel Processing Technology, 2016, 142, 219-227.	7.2	68
41	Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents. Scientific Reports, 2015, 5, 9461.	3.3	3
42	Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum. PLoS ONE, 2015, 10, e0144054.	2.5	99
43	Swirl flow bioreactor containing dendritic copper-containing alginate beads: A potential rapid method for the eradication of Escherichia coli from waste water streams. Journal of Water Process Engineering, 2015, 5, 6-14.	5.6	10
44	The Bactericidal Effect of Dendritic Copper Microparticles, Contained in an Alginate Matrix, on Escherichia coli. PLoS ONE, 2014, 9, e96225.	2.5	13
45	A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids. PLoS ONE, 2014, 9, e115688.	2.5	1
46	Exploring nicotinamide cofactor promiscuity in NAD(P)H-dependent flavin containing monooxygenases (FMOs) using natural variation within the phosphate binding loop. Structure and activity of FMOs from Cellvibrio sp. BR and Pseudomonas stutzeri NF13. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 191-198.	1.8	13
47	Permanent draft genomes of four new coccolithoviruses: EhV-18, EhV-145, EhV-156 and EhV-164. Marine Genomics, 2014, 15, 7-8.	1.1	6
48	Reduction in photosystem II efficiency during a virus-controlled Emiliania huxleyi bloom. Marine Ecology - Progress Series, 2014, 495, 65-76.	1.9	16
49	Dip in the gene pool: Metagenomic survey of natural coccolithovirus communities. Virology, 2014, 466-467, 129-137.	2.4	10
50	Functional and structural characterisation of a viral cytochrome <i>b</i> 5. FEBS Letters, 2013, 587, 3633-3639.	2.8	7
51	Mutations of an NAD(P)Hâ€dependent flavoprotein monooxygenase that influence cofactor promiscuity and enantioselectivity. FEBS Open Bio, 2013, 3, 473-478.	2.3	15
52	Functional inferences of environmental coccolithovirus biodiversity. Virologica Sinica, 2013, 28, 291-302.	3.0	10
53	Genomic Sequence and Analysis of EhV-99B1, a New Coccolithovirus from the Norwegian Fjords. Intervirology, 2013, 56, 60-66.	2.8	16
54	Draft Genome Sequence of Four Coccolithoviruses: Emiliania huxleyi Virus EhV-88, EhV-201, EhV-207, and EhV-208. Journal of Virology, 2012, 86, 2896-2897.	3.4	25

#	Article	IF	CITATIONS
55	Genome Sequence of Stenotrophomonas maltophilia PML168, Which Displays Baeyer-Villiger Monooxygenase Activity. Journal of Bacteriology, 2012, 194, 4753-4754.	2.2	6
56	Draft Genome Sequence of the Coccolithovirus Emiliania huxleyi Virus 202. Journal of Virology, 2012, 86, 2380-2381.	3.4	20
57	A Flavoprotein Monooxygenase that Catalyses a Baeyer–Villiger Reaction and Thioether Oxidation Using NADH as the Nicotinamide Cofactor. ChemBioChem, 2012, 13, 872-878.	2.6	39
58	Characterisation of the coccolithovirus intein. Marine Genomics, 2011, 4, 1-7.	1.1	7
59	Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting. Marine Drugs, 2011, 9, 586-602.	4.6	7
60	Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106). Standards in Genomic Sciences, 2011, 4, 183-190.	1.5	19
61	Draft genome sequence of the coccolithovirus EhV-84. Standards in Genomic Sciences, 2011, 5, 1-11.	1.5	20
62	Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms. FEMS Microbiology Ecology, 2011, 78, 555-564.	2.7	23
63	Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry, 2011, 72, 594-600.	2.9	57
64	Genome Sequence of Ostreococcus tauri Virus OtV-2 Throws Light on the Role of Picoeukaryote Niche Separation in the Ocean. Journal of Virology, 2011, 85, 4520-4529.	3.4	55
65	Draft Genome Sequence of the Coccolithovirus Emiliania huxleyi Virus 203. Journal of Virology, 2011, 85, 13468-13469.	3.4	15
66	Coccolithovirus. , 2011, , 1253-1257.		1
67	Giant virus with a remarkable complement of genes infects marine zooplankton. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19508-19513.	7.1	317
68	Transcriptional host–virus interaction of <i>Emiliania huxleyi</i> (Haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays. European Journal of Phycology, 2010, 45, 1-12.	2.0	22
69	Genomics in the Discovery and Monitoring of Marine Biodiversity. , 2010, , 1-32.		7
70	Marine Biotechnology. , 2010, , 287-313.		8
71	Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Research, 2009, 19, 1441-1449.	5.5	139
72	Realizing the potential of marine biotechnology: CHALLENGES & OPPORTUNITIES. Industrial Biotechnology, 2009, 5, 77-83.	0.8	16

#	Article	IF	CITATIONS
73	From small hosts come big viruses: the complete genome of a second <i>Ostreococcus tauri</i> virus, OtVâ€1. Environmental Microbiology, 2009, 11, 2821-2839.	3.8	64
74	Host–virus shift of the sphingolipid pathway along an <i>Emiliania huxleyi</i> bloom: survival of the fattest. Environmental Microbiology, 2009, 11, 2840-2848.	3.8	54
75	The minimum information about a genome sequence (MIGS) specification. Nature Biotechnology, 2008, 26, 541-547.	17.5	1,069
76	Proteomic analysis of the EhV-86 virion. Proteome Science, 2008, 6, 11.	1.7	33
77	Aquatic virus diversity accessed through omic techniques: A route map to function. Current Opinion in Microbiology, 2008, 11, 226-232.	5.1	23
78	The "Cheshire Cat―escape strategy of the coccolithophore <i>Emiliania huxleyi</i> in response to viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15944-15949.	7.1	184
79	Pilot study of an EST approach of the coccolithophorid Emiliania huxleyi during a virus infection. Gene, 2007, 406, 209-216.	2.2	9
80	Use of microarrays to assess viral diversity: from genotype to phenotype. Environmental Microbiology, 2007, 9, 971-982.	3.8	42
81	Genome comparison of two Coccolithoviruses. Virology Journal, 2006, 3, 15.	3.4	32
82	Standard Annotation of Environmental OMICS Data: Application to the Transcriptomics Domain. OMICS A Journal of Integrative Biology, 2006, 10, 172-178.	2.0	21
83	Preliminary characterisation of repeat families in the genome of EhV-86, a giant algal virus that infects the marine microalga Emiliania huxleyi. Archives of Virology, 2006, 151, 525-535.	2.1	26
84	Locus-Specific Gene Expression Pattern Suggests a Unique Propagation Strategy for a Giant Algal Virus. Journal of Virology, 2006, 80, 7699-7705.	3.4	49
85	Evolutionary History of the Coccolithoviridae. Molecular Biology and Evolution, 2006, 23, 86-92.	8.9	57
86	The coccolithovirus microarray: an array of uses. Briefings in Functional Genomics & Proteomics, 2006, 5, 273-279.	3.8	10
87	The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology (United Kingdom), 2006, 152, 989-1000.	1.8	108
88	Expression of a Novel Marine Viral Single-chain Serine Palmitoyltransferase and Construction of Yeast and Mammalian Single-chain Chimera. Journal of Biological Chemistry, 2006, 281, 39935-39942.	3.4	53
89	Complete Genome Sequence and Lytic Phase Transcription Profile of a <i>Coccolithovirus</i> . Science, 2005, 309, 1090-1092.	12.6	270
90	Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochemical and Biophysical Research Communications, 2004, 318, 397-404.	2.1	52

#	Article	IF	CITATIONS
91	Hyperspectral imaging as a tool for assessing coral health utilising natural fluorescence. Journal of Spectral Imaging, 0, , .	0.0	7