Andrew H Baird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679097/publications.pdf Version: 2024-02-01

		28274	12272
152	19,356	55	133
papers	citations	h-index	g-index
233	233	233	12129
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 2003, 301, 929-933.	12.6	3,124
2	Global warming and recurrent mass bleaching of corals. Nature, 2017, 543, 373-377.	27.8	2,363
3	Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 2018, 359, 80-83.	12.6	1,515
4	Global warming transforms coral reef assemblages. Nature, 2018, 556, 492-496.	27.8	1,173
5	Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs, 2000, 19, 155-163.	2.2	830
6	Systematic and Biogeographical Patterns in the Reproductive Biology of Scleractinian Corals. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 551-571.	8.3	590
7	Recovery of an Isolated Coral Reef System Following Severe Disturbance. Science, 2013, 340, 69-71.	12.6	462
8	Coral bleaching: the role of the host. Trends in Ecology and Evolution, 2009, 24, 16-20.	8.7	461
9	Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress. PLoS ONE, 2012, 7, e33353.	2.5	409
10	Comanagement of coral reef social-ecological systems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5219-5222.	7.1	400
11	Global warming impairs stock–recruitment dynamics of corals. Nature, 2019, 568, 387-390.	27.8	378
12	SUPPLY-SIDE ECOLOGY WORKS BOTH WAYS: THE LINK BETWEEN BENTHIC ADULTS, FECUNDITY, AND LARVAL RECRUITS. Ecology, 2000, 81, 2241-2249.	3.2	347
13	Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature, 1999, 397, 59-63.	27.8	321
14	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	5.8	289
15	Ecological memory modifies the cumulative impact of recurrent climate extremes. Nature Climate Change, 2019, 9, 40-43.	18.8	253
16	Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs, 2008, 27, 529-539.	2.2	232
17	Does vegetation prevent wave erosion of salt marsh edges?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10109-10113.	7.1	215
18	Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Marine Pollution Bulletin, 2004, 48, 327-335.	5.0	209

#	Article	IF	CITATIONS
19	The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data, 2016, 3, 160017.	5.3	189
20	Declines in the abundance of Chaetodon butterflyfishes following extensive coral depletion. Journal of Fish Biology, 2006, 69, 1269-1280.	1.6	176
21	Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology, 2010, 91, 3572-3583.	3.2	161
22	A Trait-Based Approach to Advance Coral Reef Science. Trends in Ecology and Evolution, 2016, 31, 419-428.	8.7	161
23	Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conservation Letters, 2010, 3, 1-11.	5.7	156
24	Mechanical vulnerability explains sizeâ€dependent mortality of reef corals. Ecology Letters, 2014, 17, 1008-1015.	6.4	142
25	Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs, 2013, 32, 803-812.	2.2	110
26	Pole-ward range expansion of Acropora spp. along the east coast of Australia. Coral Reefs, 2012, 31, 1063-1063.	2.2	106
27	DETECTING REGIONAL VARIATION USING META-ANALYSIS AND LARGE-SCALE SAMPLING: LATITUDINAL PATTERNS IN RECRUITMENT. Ecology, 2002, 83, 436-451.	3.2	99
28	Biogeographical disparity in the functional diversity and redundancy of corals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3084-3089.	7.1	98
29	Cleaning up the 'Bigmessidae': Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evolutionary Biology, 2011, 11, 37.	3.2	94
30	Increased local retention of reef coral larvae as a result of ocean warming. Nature Climate Change, 2014, 4, 498-502.	18.8	94
31	Comments on "Coastal mangrove forests mitigated tsunami―by K. Kathiresan and N. Rajendran [Estuar. Coast. Shelf Sci. 65 (2005) 601–606]. Estuarine, Coastal and Shelf Science, 2006, 67, 539-541.	2.1	92
32	Coral larvae are poor swimmers and require fine-scale reef structure to settle. Scientific Reports, 2017, 7, 2249.	3.3	92
33	Selective coral mortality associated with outbreaks of Acanthaster planci L. in Bootless Bay, Papua New Guinea. Marine Environmental Research, 2009, 67, 230-236.	2.5	91
34	Synthesizing larval competence dynamics and reefâ€scale retention reveals a high potential for selfâ€recruitment in corals. Ecology, 2013, 94, 650-659.	3.2	91
35	The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs, 2013, 32, 111-120.	2.2	89
36	Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130818.	2.6	87

#	Article	IF	CITATIONS
37	Shifting base-lines, declining coral cover, and the erosion of reef resilience: comment on Sweatman et al. (2011). Coral Reefs, 2011, 30, 653-660.	2.2	86
38	Acehnese Reefs in the Wake of the Asian Tsunami. Current Biology, 2005, 15, 1926-1930.	3.9	85
39	Seasonal reproduction in equatorial reef corals. Invertebrate Reproduction and Development, 2005, 48, 207-218.	0.8	84
40	<i>ReefTemp</i> : An interactive monitoring system for coral bleaching using highâ€resolution SST and improved stress predictors. Geophysical Research Letters, 2008, 35, .	4.0	81
41	Assembly Rules of Reef Corals Are Flexible along a Steep Climatic Gradient. Current Biology, 2012, 22, 736-741.	3.9	81
42	Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 75-81.	2.6	79
43	Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160011.	2.6	78
44	Adaptive Management of the Great Barrier Reef and the Grand Canyon World Heritage Areas. Ambio, 2007, 36, 586-592.	5.5	77
45	Natural Barriers to Natural Disasters. BioScience, 2007, 57, 102-103.	4.9	76
46	Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching. Global Change Biology, 2016, 22, 2475-2488.	9.5	75
47	The Paradox of Environmental Symbiont Acquisition in Obligate Mutualisms. Current Biology, 2017, 27, 3711-3716.e3.	3.9	75
48	Induction of metamorphosis in larvae of the brooding corals Acropora palifera and Stylophora pistillata. Marine and Freshwater Research, 2004, 55, 469.	1.3	74
49	Weak Compliance Undermines the Success of No-Take Zones in a Large Government-Controlled Marine Protected Area. PLoS ONE, 2012, 7, e50074.	2.5	74
50	Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs, 2005, 24, 112-116.	2.2	72
51	Fecundity and the demographic strategies of coral morphologies. Ecology, 2016, 97, 3485-3493.	3.2	71
52	Broadcast Spawning by Pocillopora Species on the Great Barrier Reef. PLoS ONE, 2012, 7, e50847.	2.5	68
53	Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. Protist, 2013, 164, 237-244.	1.5	68
54	Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs, 2012, 31, 613-619.	2.2	64

#	Article	IF	CITATIONS
55	Towards a phylogenetic classification of reef corals: the <scp>I</scp> ndoâ€ <scp>P</scp> acific genera <i><scp>M</scp>erulina</i> , <i><scp>G</scp>oniastrea</i> and <i><scp>S</scp>capophyllia</i> (<scp>S</scp> cleractinia, <scp>M</scp> erulinidae). Zoologica Scripta, 2014, 43, 531-548.	1.7	62
56	Fluorescence census techniques for the early detection of coral recruits. Coral Reefs, 2006, 25, 73-76.	2.2	59
57	Morphological traits can track coral reef responses to the Anthropocene. Functional Ecology, 2019, 33, 962-975.	3.6	59
58	An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Molecular Phylogenetics and Evolution, 2020, 153, 106944.	2.7	59
59	Refugia under threat: Mass bleaching of coral assemblages in highâ€latitude eastern Australia. Global Change Biology, 2019, 25, 3918-3931.	9.5	56
60	Influence of fish grazing and sedimentation on the early post-settlement survival of the tabular coral Acropora cytherea. Coral Reefs, 2013, 32, 1051-1059.	2.2	53
61	Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia, 2012, 170, 567-573.	2.0	52
62	Allometric growth in reef-building corals. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170053.	2.6	51
63	Coral reproduction in the world's warmest reefs: southern Persian Gulf (Dubai, United Arab) Tj ETQq1 1 0.76	34314 rgB ⁻ 2.2	T /Qyerlock 10
64	Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS ONE, 2012, 7, e44364.	2.5	48
65	Green fluorescence from cnidarian hosts attracts symbiotic algae. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2118-2123.	7.1	48
66	Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Marine Environmental Research, 2013, 84, 43-50.	2.5	45
67	Latitudinal variation in thermal tolerance thresholds of early life stages of corals. Coral Reefs, 2015, 34, 471-478.	2.2	44
68	Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Molecular Phylogenetics and Evolution, 2016, 105, 146-159.	2.7	44
69	Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nature Climate Change, 2018, 8, 986-991.	18.8	44
70	Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs, 2019, 38, 713-719.	2.2	44
71	Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf. Marine Pollution Bulletin, 2016, 105, 654-659.	5.0	39
72	Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. Coral Reefs, 2015, 34, 65-77.	2.2	38

#	Article	IF	CITATIONS
73	Differential establishment potential of species predicts a shift in coral assemblage structure across a biogeographic barrier. Ecography, 2015, 38, 1225-1234.	4.5	38
74	A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia, 2017, 183, 161-175.	2.0	38
75	Coral Adaptation in the Face of Climate Change. Science, 2008, 320, 315-316.	12.6	37
76	Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Marine Biology, 2011, 158, 275-285.	1.5	37
77	Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs, 2013, 32, 539-549.	2.2	35
78	Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 2013, 2, 187.	1.6	35
79	Latitudinal variation in reproductive synchrony in Acropora assemblages: Japan vs. Australia. Galaxea, 2009, 11, 101-108.	0.7	35
80	Do mangroves provide an effective barrier to storm surges?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E111; author reply E112.	7.1	34
81	An Indo-Pacific coral spawning database. Scientific Data, 2021, 8, 35.	5.3	34
82	An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals. Coral Reefs, 2005, 24, 248-253.	2.2	33
83	Morphological differences among three species of newly settled pocilloporid coral recruits. , 2000, 19, 179-183.		32
84	Synchronous reproduction of corals in the Red Sea. Coral Reefs, 2010, 29, 119-124.	2.2	31
85	Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae. Oecologia, 2013, 173, 431-438.	2.0	31
86	Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 0, 2, 187.	1.6	31
87	Landscape analysis and tsunami damage in Aceh: comment on Iverson and Prasad (2007). Landscape Ecology, 2008, 23, 3-5.	4.2	30
88	Revisiting the Cassandra syndrome; the changing climate of coral reef research. Coral Reefs, 2008, 27, 745-749.	2.2	30
89	Sexual systems in scleractinian corals: an unusual pattern in the reef-building species Diploastrea heliopora. Coral Reefs, 2012, 31, 705-713.	2.2	29
90	When forms meet genes: revision of the scleractinian genera Micromussa and Homophyllia (Lobophylliidae) with a description of two new species and one new genus. Contributions To Zoology, 2016, 85, 387-422.	0.5	27

#	Article	IF	CITATIONS
91	Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 2013, 2, 187.	1.6	27
92	The role of habitat creation in coral reef conservation: a case study from Aceh, Indonesia. Oryx, 2012, 46, 501-507.	1.0	26
93	Avoiding conflicts and protecting coral reefs: customary management benefits marine habitats and fish biomass. Oryx, 2012, 46, 486-494.	1.0	26
94	Contrasting patterns of changes in abundance following a bleaching event between juvenile and adult scleractinian corals. Coral Reefs, 2018, 37, 527-532.	2.2	25
95	Clobal warming decreases connectivity among coral populations. Nature Climate Change, 2022, 12, 83-87.	18.8	25
96	Partitioning colony size variation into growth and partial mortality. Biology Letters, 2020, 16, 20190727.	2.3	24
97	From microbes to people. Oceanography and Marine Biology, 2011, , .	1.0	23
98	Uncoupling temperature-dependent mortality from lipid depletion for scleractinian coral larvae. Coral Reefs, 2017, 36, 97-104.	2.2	23
99	Climateâ€driven shift in coral morphological structure predicts decline of juvenile reef fishes. Global Change Biology, 2020, 26, 557-567.	9.5	23
100	Environmental tolerance governs the presence of reef corals at latitudes beyond reef growth. Global Ecology and Biogeography, 2016, 25, 979-987.	5.8	20
101	Species traits as indicators of coral bleaching. Coral Reefs, 2018, 37, 791-800.	2.2	20
102	Negligible effect of competition on coral colony growth. Ecology, 2018, 99, 1347-1356.	3.2	19
103	From molecules to moonbeams: Spawning synchrony in coral reef organisms. Invertebrate Reproduction and Development, 2008, 51, 145-149.	0.8	18
104	The Coral Triangle Initiative: what are we missing? A case study from Aceh. Oryx, 2012, 46, 482-485.	1.0	18
105	A step-down photophobic response in coral larvae: implications for the light-dependent distribution of the common reef coral, Acropora tenuis. Scientific Reports, 2020, 10, 17680.	3.3	18
106	Reproductive Synchrony in <i>Acropora</i> Assemblages on Reefs of New Caledonia. Pacific Science, 2010, 64, 405-412.	0.6	17
107	Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae). Contributions To Zoology, 2014, 83, 195-S7.	0.5	17
108	Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates. Marine Pollution Bulletin, 2017, 114, 1031-1035.	5.0	17

#	Article	IF	CITATIONS
109	Unusual shallow water Devonian coral community from Queensland and its recent analogues from the inshore Great Barrier Reef. Coral Reefs, 2021, 40, 417-431.	2.2	17
110	No evidence for tropicalization of coral assemblages in a subtropical climate change hot spot. Coral Reefs, 2021, 40, 1451-1461.	2.2	17
111	Short Communication: Variable palatability of coral eggs to a planktivorous fish. Marine and Freshwater Research, 2001, 52, 865.	1.3	16
112	Ontogenetic change in the abundance of mycosporine-like amino acids in non-zooxanthellate coral larvae. Coral Reefs, 2005, 24, 443-452.	2.2	16
113	Resolving the depth zonation paradox in reefâ€building corals. Ecology, 2019, 100, e02761.	3.2	16
114	Solving the Coral Species Delimitation Conundrum. Systematic Biology, 2022, 71, 461-475.	5.6	16
115	Coral tumor-like growth anomalies induce an immune response and reduce fecundity. Diseases of Aquatic Organisms, 2018, 130, 77-81.	1.0	15
116	Coral Reef Biodiversity and Conservation. Science, 2002, 296, 1026-1028.	12.6	14
117	Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia,) Tj ETQq1 1 0.7843	14 _I gBT /C)verlock 10 Tf
118	Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. Diversity, 2021, 13, 632.	1.7	14
119	Reply to â€~Using remote sensing to assess the protective role of coastal woody vegetation against tsunami waves'. International Journal of Remote Sensing, 2009, 30, 3817-3820.	2.9	12
120	Morphology and molecules reveal two new species of <i>Porites</i> (Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. Systematics and Biodiversity, 2019, 17, 491-508.	1.2	12
121	The Point Count Transect Method for Estimates of Biodiversity on Coral Reefs: Improving the Sampling of Rare Species. PLoS ONE, 2016, 11, e0152335.	2.5	12
122	Daytime gamete release from the reef-building coral, Pavona sp., in the Gulf of Thailand. Coral Reefs, 2006, 25, 72-72.	2.2	11
123	Coral reproduction in a high-latitude, marginal reef environment (Moreton Bay, south-east) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf 5
124	Cyphastrea kausti sp. n. (Cnidaria, Anthozoa, Scleractinia), a new species of reef coral from the Red Sea. ZooKeys, 2015, 496, 1-13.	1.1	11
125	Consequences of Coral Bleaching for Sessile Reef Organisms. Ecological Studies, 2018, , 231-263.	1.2	10
126	Incongruence between life-history traits and conservation status in reef corals. Coral Reefs, 2020, 39, 271-279.	2.2	10

#	Article	lF	CITATIONS
127	Rapid coral mortality following doldrums-like conditions on Iriomote, Japan. F1000Research, 2017, 6, 1728.	1.6	10
128	A coral spawning calendar for Sesoko Station, Okinawa, Japan. Galaxea, 2022, 24, 41-49.	0.7	10
129	Rapid coral mortality following unusually calm and hot conditions on Iriomote, Japan. F1000Research, 2017, 6, 1728.	1.6	9
130	Environmental constraints on the mode of symbiont transmission in corals. Journal of Experimental Marine Biology and Ecology, 2021, 538, 151499.	1.5	9
131	Reseeding the reefs of Okinawa with the larvae of captive-bred corals. Coral Reefs, 2003, 22, 34-34.	2.2	8
132	Environmental factors limiting fertilisation and larval success in corals. Coral Reefs, 2016, 35, 1433-1440.	2.2	8
133	Immunity through early development of coral larvae. Developmental and Comparative Immunology, 2012, 38, 395-399.	2.3	7
134	Trying to find Nemo: low abundance of sea anemones and anemonefishes on central and southern mid-shelf reefs in the Great Barrier Reef. Marine Biodiversity, 2015, 45, 327-331.	1.0	7
135	Testing biodiversity theory using species richness of reef-building corals across a depth gradient. Biology Letters, 2019, 15, 20190493.	2.3	7
136	Highâ€frequency sampling and piecewise models reshape dispersal kernels of a common reef coral. Ecology, 2019, 100, e02730.	3.2	7
137	Loss of symbiont infectivity following thermal stress can be a factor limiting recovery from bleaching in cnidarians. ISME Journal, 2020, 14, 3149-3152.	9.8	7
138	Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs, 2021, 40, 1411-1418.	2.2	7
139	Functional consequences of Palaeozoic reef collapse. Scientific Reports, 2022, 12, 1386.	3.3	7
140	Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Molecular Phylogenetics and Evolution, 2022, 172, 107469.	2.7	6
141	Spatial and Temporal Variation in Fecundity of Acropora spp. in the Northern Great Barrier Reef. Diversity, 2019, 11, 60.	1.7	5
142	Multispecific synchronous coral spawning on Pulau Bidong, Malaysia, South China Sea. Bulletin of Marine Science, 2020, 96, 193-194.	0.8	5
143	Tissue biomass trades off with growth but not reproduction in corals. Coral Reefs, 2020, 39, 1027-1037.	2.2	5
144	The reproductive season of Acropora in Socotra, Yemen. F1000Research, 2014, 3, 78.	1.6	5

#	Article	IF	CITATIONS
145	Coralliths of tabulate corals from the Devonian of the Holy Cross Mountains (Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585, 110745.	2.3	4
146	Very high coral cover at 36ŰS on the east coast of Australia. Coral Reefs, 2015, 34, 327-327.	2.2	3
147	A tropical cleaner wrasse finds new clients at the frontier. Frontiers in Ecology and the Environment, 2016, 14, 110-111.	4.0	3
148	The reproductive season of scleractinian corals in Socotra, Yemen. F1000Research, 2014, 3, 78.	1.6	3
149	Detecting Regional Variation Using Meta-Analysis and Large-Scale Sampling: Latitudinal Patterns in Recruitment. Ecology, 2002, 83, 436.	3.2	2
150	Scope for latitudinal extension of reef corals is species specific. Frontiers of Biogeography, 2016, 8, .	1.8	1
151	A pre-zygotic barrier to hybridization in two con-generic species of scleractinian corals. F1000Research, 2013, 2, 193.	1.6	1
152	SUPPLY-SIDE ECOLOGY WORKS BOTH WAYS: THE LINK BETWEEN BENTHIC ADULTS, FECUNDITY, AND LARVAL RECRUITS. , 2000, 81, 2241.		1