
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1678709/publications.pdf Version: 2024-02-01

LACER RADWAN

#	Article	IF	CITATIONS
1	Effective specialist or jack of all trades? Experimental evolution of a crop pest in fluctuating and stable environments. Evolutionary Applications, 2022, 15, 1639-1652.	3.1	7
2	Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Molecular Ecology, 2022, 31, 3400-3415.	3.9	7
3	Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nature Ecology and Evolution, 2022, 6, 1330-1342.	7.8	8
4	Balancing selection versus allele and supertype turnover in MHC class II genes in guppies. Heredity, 2021, 126, 548-560.	2.6	9
5	Expansion of frozen hybrids in the guppy ectoparasite, Gyrodactylus turnbulli. Molecular Ecology, 2021, 30, 1005-1016.	3.9	4
6	Functional immunogenetic variation, rather than local adaptation, predicts ectoparasite infection intensity in a model fish species. Molecular Ecology, 2021, 30, 5588-5604.	3.9	4
7	What do orange spots reveal about male (and female) guppies? A test using correlated responses to selection. Evolution; International Journal of Organic Evolution, 2021, 75, 3037-3055.	2.3	6
8	Sexual and ecological selection on a sexual conflict gene. Journal of Evolutionary Biology, 2020, 33, 1433-1439.	1.7	4
9	Mating preferences can drive expansion or contraction of major histocompatibility complex gene family. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192706.	2.6	5
10	RNA‣eq analysis of the guppy immune response against <i>Gyrodactylus bullatarudis</i> infection. Parasite Immunology, 2020, 42, e12782.	1.5	10
11	Sexually selected male weapon is associated with lower inbreeding load but higher sex load in the bulb mite. Evolution; International Journal of Organic Evolution, 2020, 74, 1851-1855.	2.3	7
12	Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Molecular Ecology, 2020, 29, 1494-1507.	3.9	11
13	Advances in the Evolutionary Understanding of MHC Polymorphism. Trends in Genetics, 2020, 36, 298-311.	6.7	188
14	Evolution of major histocompatibility complex gene copy number. PLoS Computational Biology, 2019, 15, e1007015.	3.2	23
15	Sexual selection drives the evolution of male wing interference patterns. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182850.	2.6	27
16	Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5021-5026.	7.1	48
17	<i>Wolbachia</i> infection can bias estimates of intralocus sexual conflict. Ecology and Evolution, 2019, 9, 328-338.	1.9	7
18	Evolution of mate guarding under the risk of intrasexual aggression in a mite with alternative mating tactics. Animal Behaviour, 2018, 137, 75-82.	1.9	3

#	Article	IF	CITATIONS
19	Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine. Molecular Ecology, 2018, 27, 2594-2603.	3.9	25
20	Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proceedings of the United States of America, 2018, 115, 1552-1557.	7.1	86
21	The role of MHC supertypes in promoting trans-species polymorphism remains an open question. Nature Communications, 2018, 9, 4362.	12.8	13
22	Fitness consequences of threshold trait expression subject to environmental cues. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180783.	2.6	11
23	Male-limited secondary sexual trait interacts with environment in determining female fitness. Evolution; International Journal of Organic Evolution, 2018, 72, 1716-1722.	2.3	6
24	Profiling of the TCRβ repertoire in non-model species using high-throughput sequencing. Scientific Reports, 2018, 8, 11613.	3.3	13
25	Relative costs and benefits of alternative reproductive phenotypes at different temperatures – genotype-by-environment interactions in a sexually selected trait. BMC Evolutionary Biology, 2018, 18, 109.	3.2	15
26	Kin selection promotes female productivity and cooperation between the sexes. Science Advances, 2017, 3, e1602262.	10.3	23
27	De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus). Heredity, 2017, 118, 348-357.	2.6	11
28	Testing genotyping strategies for ultraâ€deep sequencing of a coâ€amplifying gene family: MHC class I in a passerine bird. Molecular Ecology Resources, 2017, 17, 642-655.	4.8	46
29	Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions. BMC Evolutionary Biology, 2017, 17, 159.	3.2	39
30	Transcriptomics of Intralocus Sexual Conflict: Gene Expression Patterns in Females Change in Response to Selection on a Male Secondary Sexual Trait in the Bulb Mite. Genome Biology and Evolution, 2016, 8, 2351-2357.	2.5	20
31	<scp>MHC</scp> , parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis. Journal of Evolutionary Biology, 2016, 29, 617-632.	1.7	21
32	Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation. Molecular Biology and Evolution, 2016, 33, 2429-2440.	8.9	25
33	Population structure of edible dormouse in Poland: the role of habitat fragmentation and implications for conservation. Journal of Zoology, 2016, 298, 217-224.	1.7	8
34	<scp>amplisas</scp> : a web server for multilocus genotyping using nextâ€generation amplicon sequencing data. Molecular Ecology Resources, 2016, 16, 498-510.	4.8	110
35	Experimental evolution under hyper-promiscuity in Drosophila melanogaster. BMC Evolutionary Biology, 2016, 16, 131.	3.2	16
36	Experimental evolution reveals balancing selection underlying coexistence of alternative male reproductive phenotypes. Evolution; International Journal of Organic Evolution, 2016, 70, 2611-2615.	2.3	16

#	Article	IF	CITATIONS
37	A Paradox of Genetic Variance in Epigamic Traits: Beyond "Good Genes―View of Sexual Selection. Evolutionary Biology, 2016, 43, 267-275.	1.1	26
38	The locus of sexual selection: moving sexual selection studies into the postâ€genomics era. Journal of Evolutionary Biology, 2015, 28, 739-755.	1.7	69
39	Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC) Genes. PLoS Computational Biology, 2015, 11, e1004627.	3.2	54
40	Effects of heterozygosity and MHC diversity on patterns of extra-pair paternity in the socially monogamous scarlet rosefinch. Behavioral Ecology and Sociobiology, 2015, 69, 459-469.	1.4	17
41	Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression. Molecular Biology and Evolution, 2015, 32, 1461-1473.	8.9	26
42	Population growth rate and genetic variability of small and large populations of Red flour beetle (Tribolium castaneum) following multigenerational exposure to copper. Ecotoxicology, 2015, 24, 1162-1170.	2.4	10
43	Effect of induced mutations on sexually selected traits in the guppy, Poecilia reticulata. Animal Behaviour, 2015, 110, 105-111.	1.9	7
44	No Evidence for the Effect of MHC on Male Mating Success in the Brown Bear. PLoS ONE, 2014, 9, e113414.	2.5	8
45	Colony size, but not density, affects survival and mating success of alternative male reproductive tactics in a polyphenic mite, Rhizoglyphus echinopus. Behavioral Ecology and Sociobiology, 2014, 68, 1921-1928.	1.4	6
46	Heterozygosity and orange coloration are associated in the guppy (<i>Poecilia reticulata</i>). Journal of Evolutionary Biology, 2014, 27, 220-225.	1.7	17
47	Alternative reproductive tactics and sexâ€biased gene expression: the study of the bulb mite transcriptome. Ecology and Evolution, 2014, 4, 623-632.	1.9	50
48	Selective pressures on <scp>MHC</scp> class <scp>II</scp> genes in the guppy (<i><scp>P</scp>oecilia) Tj ET Biology, 2014, 27, 2347-2359.</i>	Qq0 0 0 r 1.7	gBT /Overlock 55
49	Parasite load and <scp>MHC</scp> diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Molecular Ecology, 2014, 23, 5966-5978.	3.9	32
50	Accuracy of allele frequency estimation using pooled <scp>RNA</scp> eq. Molecular Ecology Resources, 2014, 14, 381-392.	4.8	54
51	Inbreeding alters intersexual fitness correlations in Drosophila simulans Ecology and Evolution, 2014, 4, 3330-3338.	1.9	12
52	Sexual selection and the evolutionary dynamics of the major histocompatibility complex. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141662.	2.6	44
53	SELECTION FOR ALTERNATIVE MALE REPRODUCTIVE TACTICS ALTERS INTRALOCUS SEXUAL CONFLICT. Evolution; International Journal of Organic Evolution, 2014, 68, 2137-2144.	2.3	44
54	Population structure of guppies in north-eastern Venezuela, the area of putative incipient speciation. BMC Evolutionary Biology, 2014, 14, 28.	3.2	7

#	Article	IF	CITATIONS
55	MHC influences infection with parasites and winter survival in the root vole Microtus oeconomus. Evolutionary Ecology, 2013, 27, 635-653.	1.2	39
56	No Evidence for Reproductive Isolation through Sexual Conflict in the Bulb Mite Rhizoglyphus robini. PLoS ONE, 2013, 8, e74971.	2.5	11
57	Low Major Histocompatibility Complex Class I (MHC I) Variation in the European Bison (Bison bonasus). Journal of Heredity, 2012, 103, 349-359.	2.4	18
58	Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evolutionary Biology, 2012, 12, 197.	3.2	63
59	Mating system affects population performance and extinction risk under environmental challenge. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4661-4667.	2.6	59
60	The genomics of adaptation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 5024-5028.	2.6	45
61	META-ANALYSIS SUGGESTS CHOOSY FEMALES GET SEXY SONS MORE THAN "GOOD GENES― Evolution; International Journal of Organic Evolution, 2012, 66, 2665-2673.	2.3	106
62	Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine—CE SCP and 454 pyrosequencing. Molecular Ecology Resources, 2012, 12, 285-292.	4.8	42
63	Interspecific hybridization increases MHC class II diversity in two sister species of newts. Molecular Ecology, 2012, 21, 887-906.	3.9	69
64	MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Molecular Ecology, 2012, 21, 2469-2479.	3.9	82
65	Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (<i>Marmota marmota</i>). Journal of Evolutionary Biology, 2012, 25, 1686-1693.	1.7	14
66	Major histocompatibility complex DRB genes and blood parasite loads in fragmented populations of the spotted suslik Spermophilus suslicus. Mammalian Biology, 2011, 76, 672-677.	1.5	9
67	jMHC: software assistant for multilocus genotyping of gene families using nextâ€generation amplicon sequencing. Molecular Ecology Resources, 2011, 11, 739-742.	4.8	86
68	Habitat Complexity Drives Experimental Evolution of a Conditionally Expressed Secondary Sexual Trait. Current Biology, 2011, 21, 569-573.	3.9	46
69	MHC diversity in bottlenecked populations: a simulation model. Conservation Genetics, 2011, 12, 129-137.	1.5	75
70	Low inbreeding depression in a sexual trait in the stalk-eyed fly Teleopsis dalmanni. Evolutionary Ecology, 2010, 24, 827-837.	1.2	22
71	MHC allele frequency distributions under parasite-driven selection: A simulation model. BMC Evolutionary Biology, 2010, 10, 332.	3.2	31
72	Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate. BMC Genomics, 2010, 11, 390.	2.8	22

#	Article	IF	CITATIONS
73	Effects of an MHCâ€DRB genotype and allele number on the load of gut parasites in the bank vole <i>Myodes glareolus</i> . Molecular Ecology, 2010, 19, 255-265.	3.9	134
74	454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher. BMC Evolutionary Biology, 2010, 10, 395.	3.2	106
75	Does reduced MHC diversity decrease viability of vertebrate populations?. Biological Conservation, 2010, 143, 537-544.	4.1	201
76	An evaluation of two potential risk factors, MHC diversity and host density, for infection by an invasive nematode Ashworthius sidemi in endangered European bison (Bison bonasus). Biological Conservation, 2010, 143, 2049-2053.	4.1	44
77	The effect of a phosphogluconate dehydrogenase genotype on sperm competitiveness in the bulb mite,Rhizoglyphus robini. , 2010, , 295-297.		4
78	Chapter 6 Alternative Mating Tactics in Acarid Mites. Advances in the Study of Behavior, 2009, , 185-208.	1.6	25
79	Condition dependence of sexual attractiveness in the bank vole. Behavioral Ecology and Sociobiology, 2009, 63, 339-344.	1.4	6
80	Longâ€ŧerm survival of a urodele amphibian despite depleted major histocompatibility complex variation. Molecular Ecology, 2009, 18, 769-781.	3.9	58
81	SEXUAL SELECTION COUNTERACTS EXTINCTION OF SMALL POPULATIONS OF THE BULB MITES. Evolution; International Journal of Organic Evolution, 2009, 64, 1283-9.	2.3	50
82	New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Molecular Ecology Resources, 2009, 9, 713-719.	4.8	133
83	Maintenance of genetic variation in sexual ornaments: a review of the mechanisms. Genetica, 2008, 134, 113-127.	1.1	88
84	MHC and Preferences for Male Odour in the Bank Vole. Ethology, 2008, 114, 827-833.	1.1	41
85	Contrasting patterns of variation in MHC loci in the Alpine newt. Molecular Ecology, 2008, 17, 2339-2355.	3.9	59
86	Population fragmentation and major histocompatibility complex variation in the spotted suslik, <i>Spermophilus suslicus</i> . Molecular Ecology, 2008, 17, 4801-4811.	3.9	43
87	Male age, mating probability, and progeny fitness in the bulb mite. Behavioral Ecology, 2007, 18, 597-601.	2.2	15
88	Sequence diversity of MHC class II DRB genes in the bank voleMyodes glareolus. Acta Theriologica, 2007, 52, 227-235.	1.1	10
89	Sexual selection and conflict in the bulb mite, Rhizoglyphus robini (Astigmata: Acaridae). Experimental and Applied Acarology, 2007, 42, 151-158.	1.6	7
90	EVOLUTION UNDER RELAXED SEXUAL CONFLICT IN THE BULB MITE RHIZOGLYPHUS ROBINI. Evolution; International Journal of Organic Evolution, 2006, 60, 1868-1873.	2.3	42

#	Article	IF	CITATIONS
91	STRUCTURAL COMPLEXITY OF THE ENVIRONMENT AFFECTS THE SURVIVAL OF ALTERNATIVE MALE REPRODUCTIVE TACTICS. Evolution; International Journal of Organic Evolution, 2006, 60, 399-403.	2.3	25
92	MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus. Molecular Ecology, 2006, 16, 531-540.	3.9	61
93	Strong association between a single gene and fertilization efficiency of males and fecundity of their mates in the bulb mite. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 309-314.	2.6	18
94	EVOLUTION UNDER RELAXED SEXUAL CONFLICT IN THE BULB MITE RHIZOGLYPHUS ROBINI. Evolution; International Journal of Organic Evolution, 2006, 60, 1868.	2.3	23
95	STRUCTURAL COMPLEXITY OF THE ENVIRONMENT AFFECTS THE SURVIVAL OF ALTERNATIVE MALE REPRODUCTIVE TACTICS. Evolution; International Journal of Organic Evolution, 2006, 60, 399.	2.3	0
96	Structural complexity of the environment affects the survival of alternative male reproductive tactics. Evolution; International Journal of Organic Evolution, 2006, 60, 399-403.	2.3	6
97	Sequence diversity of the MHC DRB gene in the Eurasian beaver (<i>Castor fiber</i>). Molecular Ecology, 2005, 14, 4249-4257.	3.9	80
98	Effect of inbreeding and heritability of sperm competition success in the bulb mite Rhizoglyphus robini. Heredity, 2005, 94, 577-581.	2.6	54
99	Age dependence of male mating ability and sperm competition success in the bulb mite. Animal Behaviour, 2005, 69, 1101-1105.	1.9	47
100	Alternative phenotypes and sexual selection: can dichotomous handicaps honestly signal quality?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1401-1406.	2.6	33
101	Good genes and the maternal effects of polyandry on offspring reproductive success in the bulb mite. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 165-170.	2.6	37
102	Contest winning and metabolic competence in male bank voles Clethrionomys glareolus. Behaviour, 2004, 141, 343-354.	0.8	17
103	Testing the status-dependent ESS model: population variation in fighter expression in the mite Sancassania berlesei. Journal of Evolutionary Biology, 2004, 17, 1377-1388.	1.7	37
104	Effectiveness of sexual selection in removing mutations induced with ionizing radiation. Ecology Letters, 2004, 7, 1149-1154.	6.4	84
105	Effectiveness of sexual selection in preventing fitness deterioration in bulb mite populations under relaxed natural selection. Journal of Evolutionary Biology, 2004, 17, 94-99.	1.7	53
106	Genic capture and resolving the lek paradox. Trends in Ecology and Evolution, 2004, 19, 323-328.	8.7	527
107	Heritability of male morph in the bulb mite, Rhizoglyphus robini (Astigmata, Acaridae). Experimental and Applied Acarology, 2003, 29, 109-114.	1.6	31
108	The effect of mating frequency on female lifetime fecundity in the bulb mite, Rhizoglyphus robini (Acari: Acaridae). Behavioral Ecology and Sociobiology, 2003, 53, 110-115.	1.4	23

#	Article	IF	CITATIONS
109	Male age, germline mutations and the benefits of polyandry. Ecology Letters, 2003, 6, 581-586.	6.4	89
110	Procrustean analysis of fluctuating asymmetry in the bulb mite Rhizoglyphus robini Claparede (Astigmata: Acaridae). Biological Journal of the Linnean Society, 2003, 80, 499-505.	1.6	12
111	Inbreeding depression in fecundity and inbred line extinction in the bulb mite, Rhizoglyphus robini. Heredity, 2003, 90, 371-376.	2.6	47
112	Good genes go fisherian. Trends in Ecology and Evolution, 2002, 17, 539.	8.7	5
113	Statusâ€dependence and morphological tradeâ€offs in the expression of a sexually selected character in the mite, Sancassania berlesei. Journal of Evolutionary Biology, 2002, 15, 744-752.	1.7	57
114	Enzyme polymorphisms in Rhizoglyphus robini and R. echinopus and their application in paternity analysis. Experimental and Applied Acarology, 2002, 26, 161-168.	1.6	2
115	Male morph determination in Rhizoglyphus echinopus (Acaridae). , 2001, 25, 143-149.		39
116	POLYANDRY INCREASES OFFSPRING FECUNDITY IN THE BULB MITE. Evolution; International Journal of Organic Evolution, 2001, 55, 1893-1896.	2.3	58
117	POLYANDRY INCREASES OFFSPRING FECUNDITY IN THE BULB MITE. Evolution; International Journal of Organic Evolution, 2001, 55, 1893.	2.3	5
118	Male dimorphism in the bulb mite,Rhizoglyphus robini: fighters survive better. Ethology Ecology and Evolution, 2001, 13, 69-79.	1.4	53
119	Aggressiveness in Two Male Morphs of the Bulb Mite Rhizoglyphus robini. Ethology, 2000, 106, 53-62.	1.1	56
120	Comparison of life-history traits of the two male morphs of the bulb mite, Rhizoglyphus robini. , 2000, 24, 115-121.		43
121	Effect of Mating Frequency on Female Fitness in Caloglyphus Berlesei (Astigmata: Acaridae). Experimental and Applied Acarology, 1999, 23, 399-409.	1.6	16
122	Heritability of sperm competition success in the bulb mite,. Journal of Evolutionary Biology, 1998, 11, 321.	1.7	46
123	Sperm precedence in the bulb mite, <i>Rhizoglyphus robini</i> : context-dependent variation. Ethology Ecology and Evolution, 1997, 9, 373-383.	1.4	44
124	The function of post-insemination mate association in the bulb mite,Rhizoglyphus robini. Animal Behaviour, 1996, 52, 651-657.	1.9	55
125	Male morph determination in two species of acarid mites. Heredity, 1995, 74, 669-673.	2.6	108
126	On oestrous advertisement, spite and sexual harassment. Animal Behaviour, 1995, 49, 1399-1400.	1.9	5

#	Article	IF	CITATIONS
127	The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei. Behavioral Ecology and Sociobiology, 1993, 33, 201-208.	1.4	91
128	Kin recognition in the acarid mite, Caloglyphus berlesei: negative evidence. Animal Behaviour, 1993, 45, 200-202.	1.9	16
129	The influence of a crowded environment on the size of males ofCaloglyphus berlesei(Acari: Acaridae). International Journal of Acarology, 1992, 18, 67-68.	0.7	12
130	Sperm competition. Nature, 1991, 352, 671-672.	27.8	30
131	Sperm competition in the mite Caloglyphus berlesei. Behavioral Ecology and Sociobiology, 1991, 29, 291-296.	1.4	33