Thorsten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1678665/publications.pdf

Version: 2024-02-01

567281 501196 28 751 15 28 citations h-index g-index papers 31 31 31 594 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Nonmetal-to-Metal Transition of Magnesia Supported Au Clusters Affects the Ultrafast Dissociation Dynamics of Adsorbed CH ₃ Br Molecules. Journal of Physical Chemistry Letters, 2022, 13, 4747-4753.	4.6	1
2	Cluster Size Dependent Interaction of Free Manganese Oxide Clusters with Acetic Acid and Methyl Acetate. Journal of Physical Chemistry A, 2021, 125, 4435-4445.	2.5	2
3	Size, Stoichiometry, Dimensionality, and Ca Doping of Manganese Oxide-Based Water Oxidation Clusters: An Oxyl/Hydroxy Mechanism for Oxygen–Oxygen Coupling. Journal of Physical Chemistry Letters, 2021, 12, 5248-5255.	4.6	5
4	Intrazeolite CO Methanation by Small Ruthenium Carbonyl Complexes: Translation from Free Clusters into the Cage. ChemCatChem, 2020, 12, 3857-3862.	3.7	0
5	Infrared Spectroscopy of Gas-Phase Mn <i>>_x</i> O <i>_y</i> (CO ₂) <i>_z</i> ⁺ Complexes. Journal of Physical Chemistry A, 2020, 124, 1561-1566.	2.5	13
6	Energetic Stabilization of Carboxylic Acid Conformers by Manganese Atoms and Clusters. Journal of Physical Chemistry A, 2020, 124, 4990-4997.	2.5	3
7	Co-adsorption of O ₂ and C ₂ H ₄ on a Free Gold Dimer Probed via Infrared Photodissociation Spectroscopy. Journal of the American Society for Mass Spectrometry, 2019, 30, 1895-1905.	2.8	6
8	A Gasâ€Phase Ca _{<i>n</i>} Mn _{4â^'<i>n</i>} O ₄ ⁺ Cluster Model for the Oxygenâ€Evolving Complex of Photosystem II. Angewandte Chemie, 2019, 131, 8592-8597.	2.0	9
9	A Gasâ€Phase Ca _{<i>n</i>} Mn _{4â^³<i>n</i>} O ₄ ⁺ Cluster Model for the Oxygenâ€Evolving Complex of Photosystem II. Angewandte Chemie - International Edition, 2019, 58, 8504-8509.	13.8	10
10	Methanol C–O Bond Activation by Free Gold Clusters Probed via Infrared Photodissociation Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2019, 233, 865-880.	2.8	3
11	Infrared photodissociation spectroscopy of di-manganese oxide cluster cations. Physical Chemistry Chemical Physics, 2019, 21, 23922-23930.	2.8	8
12	The influence of metal cluster lattices on the screening of image potential state electrons on graphene. Journal of Chemical Physics, 2018, 149, 164706.	3.0	0
13	Selective Câ°'H Bond Cleavage in Methane by Small Gold Clusters. Angewandte Chemie - International Edition, 2017, 56, 13406-13410.	13.8	71
14	Cluster size and composition dependent water deprotonation by free manganese oxide clusters. Physical Chemistry Chemical Physics, 2016, 18, 15727-15737.	2.8	30
15	Interaction of Iron–Sulfur Clusters with N ₂ : Biomimetic Systems in the Gas Phase. Journal of Physical Chemistry C, 2016, 120, 12549-12558.	3.1	30
16	The Interaction of Water with Free Mn ₄ O ₄ ⁺ Clusters: Deprotonation and Adsorptionâ€Induced Structural Transformations. Angewandte Chemie - International Edition, 2015, 54, 15113-15117.	13.8	24
17	Water Deprotonation via Oxo-Bridge Hydroxylation and ¹⁸ O-Exchange in Free Tetra-Manganese Oxide Clusters. Journal of Physical Chemistry C, 2015, 119, 10881-10887.	3.1	22
18	The Origin of the Selectivity and Activity of Rutheniumâ€Cluster Catalysts for Fuelâ€Cell Feedâ€Gas Purification: A Gasâ€Phase Approach. Angewandte Chemie - International Edition, 2014, 53, 5467-5471.	13.8	30

THORSTEN

#	Article	lF	CITATION
19	Gas-Phase Synthesis and Structure of Wade-Type Ruthenium Carbonyl and Hydrido Carbonyl Clusters. Journal of Physical Chemistry A, 2014, 118, 8356-8359.	2.5	4
20	Is gold actor or spectator in the reaction of small AunPd m + clusters with O2?. European Physical Journal D, 2013, 67 , 1.	1.3	15
21	Comparison of methane activation and catalytic ethylene formation on free gold and palladium dimer cations: product binding determines the catalytic turnover. Catalysis Science and Technology, 2013, 3, 2926.	4.1	19
22	Composition and size dependent methane dehydrogenation on binary gold–palladium clusters. International Journal of Mass Spectrometry, 2013, 354-355, 365-371.	1.5	17
23	Activation and Catalytic Dehydrogenation of Methane on Small Pd _{<i>x</i>} ⁺ and Pd _{<i>x</i>} O ⁺ Clusters. Journal of Physical Chemistry C, 2013, 117, 9791-9800.	3.1	48
24	Dimensionality Dependent Water Splitting Mechanisms on Free Manganese Oxide Clusters. Nano Letters, 2013, 13, 5549-5555.	9.1	38
25	Temperature-Tunable Selective Methane Catalysis on Au ₂ ⁺ : From Cryogenic Partial Oxidation Yielding Formaldehyde to Cold Ethylene Production. Journal of Physical Chemistry C, 2011, 115, 6788-6795.	3.1	57
26	Femtosecondâ€laser photoemission and photodesorption from magnesia supported gold clusters. Physica Status Solidi (B): Basic Research, 2010, 247, 1139-1146.	1.5	28
27	Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition. Physica Status Solidi (B): Basic Research, 2010, 247, 1001-1015.	1.5	3
28	Gas-phase kinetics and catalytic reactions of small silver and gold clusters. International Journal of Mass Spectrometry, 2005, 243, 1-29.	1.5	228