

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167856/publications.pdf Version: 2024-02-01

Orti

#	Article	IF	CITATIONS
1	G-protein Î ² Î ³ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications, 2018, 9, 852.	12.8	219
2	Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10842-10847.	7.1	136
3	γ-Zeins are essential for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12810-12815.	7.1	120
4	NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11223-11228.	7.1	114
5	Proteome balancing of the maize seed for higher nutritional value. Frontiers in Plant Science, 2014, 5, 240.	3.6	109
6	Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Research, 2017, 27, 1142-1156.	12.0	98
7	RNA Interference-Mediated Change in Protein Body Morphology and Seed Opacity through Loss of Different Zein Proteins Â. Plant Physiology, 2010, 153, 337-347.	4.8	97
8	The Maize Imprinted Gene <i>Floury3</i> Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase III. Plant Cell, 2017, 29, 2661-2675.	6.6	96
9	Transcriptional Regulation of Zein Gene Expression in Maize through the Additive and Synergistic Action of opaque2, Prolamine-Box Binding Factor, and O2 Heterodimerizing Proteins. Plant Cell, 2015, 27, 1162-1172.	6.6	94
10	Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of <i>Spirodela</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18893-18899.	7.1	76
11	Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4964-4969.	7.1	67
12	The genetic architecture of amylose biosynthesis in maize kernel. Plant Biotechnology Journal, 2018, 16, 688-695.	8.3	67
13	Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nature Communications, 2019, 10, 4810.	12.8	65
14	Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS ONE, 2017, 12, e0185418.	2.5	63
15	Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nature Communications, 2013, 4, 2217.	12.8	59
16	Perception of Damaged Self in Plants. Plant Physiology, 2020, 182, 1545-1565.	4.8	55
17	Balancing of sulfur storage in maize seed. BMC Plant Biology, 2012, 12, 77.	3.6	54
18	<i>Myb10â€D</i> confers <i>PHSâ€3D</i> resistance to preâ€harvest sprouting by regulating <i>NCED</i> in ABA biosynthesis pathway of wheat. New Phytologist, 2021, 230, 1940-1952.	7.3	53

Qı Lı

#	Article	IF	CITATIONS
19	Transactivation of <i>Sus1</i> and <i>Sus2</i> by Opaque2 is an essential supplement to sucrose synthaseâ€mediated endosperm filling in maize. Plant Biotechnology Journal, 2020, 18, 1897-1907.	8.3	48
20	The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell, 2021, 33, 104-128.	6.6	48
21	Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communications, 2020, 11, 17.	12.8	45
22	RNA Interference Can Rebalance the Nitrogen Sink of Maize Seeds without Losing Hard Endosperm. PLoS ONE, 2012, 7, e32850.	2.5	41
23	Maize Oxalyl-CoA Decarboxylase1 Degrades Oxalate and Affects the Seed Metabolome and Nutritional Quality. Plant Cell, 2018, 30, 2447-2462.	6.6	40
24	Overexpression of serine acetyltransferase in maize leaves increases seedâ€specific methionineâ€rich zeins. Plant Biotechnology Journal, 2018, 16, 1057-1067.	8.3	37
25	Genome-wide analysis of the plant-specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase III complex. BMC Plant Biology, 2018, 18, 221.	3.6	37
26	Maize VKS1 Regulates Mitosis and Cytokinesis During Early Endosperm Development. Plant Cell, 2019, 31, 1238-1256.	6.6	36
27	The Maize High-Lysine Mutant opaque7 Is Defective in an Acyl-CoA Synthetase-Like Protein. Genetics, 2011, 189, 1271-1280.	2.9	34
28	Genomes and Transcriptomes of Duckweeds. Frontiers in Chemistry, 2018, 6, 230.	3.6	33
29	Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nature Communications, 2020, 11, 5346.	12.8	33
30	Rapid Divergence of Prolamin Gene Promoters of Maize After Gene Amplification and Dispersal. Genetics, 2012, 192, 507-519.	2.9	32
31	Non-Mendelian regulation and allelic variation of methionine-rich delta-zein genes in maize. Theoretical and Applied Genetics, 2009, 119, 721-731.	3.6	30
32	Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs. Genetics, 2016, 204, 581-591.	2.9	28
33	Novel Genetic Selection System for Quantitative Trait Loci of Quality Protein Maize. Genetics, 2011, 188, 1019-1022.	2.9	27
34	RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species. PLoS ONE, 2015, 10, e0140285.	2.5	27
35	The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling inÂmaize. Molecular Plant, 2022, 15, 468-487.	8.3	25
36	The PGS1 basic helixâ€loopâ€helix protein regulates <i>Fl3</i> to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20, 1311-1326.	8.3	23

Qı Lı

#	Article	IF	CITATIONS
37	EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Science, 2019, 287, 110203.	3.6	22
38	Identification and Characterization of PLATZ Transcription Factors in Wheat. International Journal of Molecular Sciences, 2020, 21, 8934.	4.1	21
39	Functional conservation and diversification of <i><scp>APETALA1</scp></i> / <i><scp>FRUITFULL</scp></i> genes in <i>Brachypodium distachyon</i> . Physiologia Plantarum, 2016, 157, 507-518.	5.2	17
40	Loss of Function of an RNA Polymerase III Subunit Leads to Impaired Maize Kernel Development. Plant Physiology, 2020, 184, 359-373.	4.8	17
41	Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. BMC Plant Biology, 2017, 17, 105.	3.6	16
42	Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation. Plant Cell, 2019, 31, tpc.00444.2019.	6.6	16
43	ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. Plant Cell, 2022, 34, 1933-1956.	6.6	16
44	BdBRD1, a brassinosteroid C-6 oxidase homolog in Brachypodium distachyon L., is required for multiple organ development. Plant Physiology and Biochemistry, 2015, 86, 91-99.	5.8	15
45	Differential Quantitative Requirements for NPR1 Between Basal Immunity and Systemic Acquired Resistance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 570422.	3.6	13
46	Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. Journal of Genetics and Genomics, 2022, 49, 506-509.	3.9	13
47	Genome-wide analysis of pentatricopeptide-repeat proteins of an aquatic plant. Planta, 2016, 244, 893-899.	3.2	11
48	AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. Frontiers in Plant Science, 2021, 12, 635732.	3.6	9
49	lsoform sequencing provides insight into natural genetic diversity in maize. Plant Biotechnology Journal, 2019, 17, 1473-1475.	8.3	8
50	High frequency DNA rearrangement at qγ27 creates a novel allele for Quality Protein Maize breeding. Communications Biology, 2019, 2, 460.	4.4	7
51	Rescue of a Dominant Mutant With RNA Interference. Genetics, 2010, 186, 1493-1496.	2.9	6
52	The encyclopedia of maize kernel gene expression. Journal of Integrative Plant Biology, 2020, 62, 879-881.	8.5	6
53	Evolution of Gene Expression after Gene Amplification. Genome Biology and Evolution, 2015, 7, 1303-1312.	2.5	5
54	Towards coeliacâ€safe bread. Plant Biotechnology Journal, 2020, 18, 1056-1065.	8.3	2

		Qi Li		
#	Article	I	F	Citations
55	Efficient artificial microRNA vectors for gene silencing in citrus. Plant Cell Reports, 2021, 40, 2449-2452.	Ę	5.6	0