Vincent Savolainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167833/publications.pdf

Version: 2024-02-01

164 papers 22,126 citations

13865 67 h-index 9345 143 g-index

171 all docs

171 docs citations

times ranked

171

18001 citing authors

#	Article	IF	CITATIONS
1	A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12794-12797.	7.1	2,120
2	Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2211-2220.	2.6	1,358
3	Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society, 2000, 133, 381-461.	1.6	801
4	The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature, 1999, 402, 404-407.	27.8	791
5	Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 2007, 445, 757-760.	27.8	787
6	DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2923-2928.	7.1	749
7	Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1904-1909.	7.1	547
8	Sympatric speciation in palms on an oceanic island. Nature, 2006, 441, 210-213.	27.8	527
9	Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid <i>rbc</i> ci>L, atpci>B, and <i>mat K</i> DNA sequences. American Journal of Botany, 2002, 89, 132-144.	1.7	520
10	Phylogenetics of Flowering Plants Based on Combined Analysis of Plastid atpB and rbcL Gene Sequences. Systematic Biology, 2000, 49, 306-362.	5.6	513
11	Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society, 2000, 133, 381-461.	1.6	512
12	Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1805-1811.	4.0	466
13	Angiosperm phylogeny based on <i><011>matK</i> sequence information. American Journal of Botany, 2003, 90, 1758-1776.	1.7	437
14	Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE, 2012, 7, e34131.	2.5	428
15	Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1889-1895.	4.0	423
16	Phylogeny of the Eudicots: A Nearly Complete Familial Analysis Based on rbcL Gene Sequences. Kew Bulletin, 2000, 55, 257.	0.9	383
17	Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses. Current Biology, 2008, 18, 37-43.	3.9	324
18	An Extreme Case of Plant–Insect Codiversification: Figs and Fig-Pollinating Wasps. Systematic Biology, 2012, 61, 1029-1047.	5.6	319

#	Article	IF	Citations
19	Molecular Systematics, GISH and the Origin of Hybrid Taxa in Nicotiana (Solanaceae). Annals of Botany, 2003, 92, 107-127.	2.9	285
20	Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4430-4435.	7.1	226
21	Large multi-gene phylogenetic trees of the grasses (Poaceae): Progress towards complete tribal and generic level sampling. Molecular Phylogenetics and Evolution, 2008, 47, 488-505.	2.7	222
22	Phylogeny of Basal Angiosperms: Analyses of Five Genes from Three Genomes. International Journal of Plant Sciences, 2000, 161, S3-S27.	1.3	221
23	The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122833.	2.6	212
24	C4 Photosynthesis Evolved in Grasses via Parallel Adaptive Genetic Changes. Current Biology, 2007, 17, 1241-1247.	3.9	211
25	Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15835-15840.	7.1	211
26	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554.	5.6	204
27	Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1489-1496.	2.6	202
28	60 million years of co-divergence in the fig–wasp symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2593-2599.	2.6	201
29	Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 221-225.	7.1	199
30	Origin and diversification of the Greater Cape flora: Ancient species repository, hot-bed of recent radiation, or both?. Molecular Phylogenetics and Evolution, 2009, 51, 44-53.	2.7	198
31	Inferring Complex Phylogenies Using Parsimony: An Empirical Approach Using Three Large DNA Data Sets for Angiosperms. Systematic Biology, 1998, 47, 32-42.	5.6	195
32	Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, 0, 162, 543-557.	1.6	195
33	Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2195-2200.	2.6	194
34	Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 2012, 100, 690-701.	4.0	191
35	Complete Generic-Level Phylogenetic Analyses of Palms (Arecaceae) with Comparisons of Supertree and Supermatrix Approaches. Systematic Biology, 2009, 58, 240-256.	5.6	189
36	Speciation with gene flow on Lord Howe Island. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13188-13193.	7.1	184

3

#	Article	IF	CITATIONS
37	EVOLUTIONARY RATES AND SPECIES DIVERSITY IN FLOWERING PLANTS. Evolution; International Journal of Organic Evolution, 2001, 55, 677.	2.3	182
38	The Effects of Above- and Belowground Mutualisms on Orchid Speciation and Coexistence. American Naturalist, 2011, 177, E54-E68.	2.1	182
39	Causes of Plant Diversification in the Cape Biodiversity Hotspot of South Africa. Systematic Biology, 2011, 60, 343-357.	5.6	180
40	Genome-scale data, angiosperm relationships, and â€~ending incongruence': a cautionary tale in phylogenetics. Trends in Plant Science, 2004, 9, 477-483.	8.8	176
41	Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes. International Journal of Plant Sciences, 2005, 166, 815-842.	1.3	162
42	Nectar Sugar Composition in Relation to Pollination Syndromes in Sinningieae (Gesneriaceae). Annals of Botany, 2001, 87, 267-273.	2.9	139
43	Broad-scale amplification of matK for DNA barcoding plants, a technical note. Botanical Journal of the Linnean Society, 0, 164 , 1 -9.	1.6	139
44	Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions. Molecular Phylogenetics and Evolution, 2002, 25, 341-360.	2.7	135
45	300,000 species to identify: problems, progress, and prospects in DNA barcoding of land plants. Taxon, 2006, 55, 611-616.	0.7	133
46	The use of herbarium specimens in DNA phylogenetics: Evaluation and improvement. Plant Systematics and Evolution, 1995, 197, 87-98.	0.9	131
47	Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear <i>ncpGS</i> . American Journal of Botany, 2003, 90, 445-460.	1.7	127
48	Testing Darwin's naturalization hypothesis in the Azores. Ecology Letters, 2011, 14, 389-396.	6.4	127
49	Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 2004, 31, 277-299.	2.7	120
50	Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biology, 2011, 11, 80.	3.6	120
51	Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Botanical Journal of the Linnean Society, 1999, 129, 267-303.	1.6	117
52	The Use of Phylogeny to Interpret Cross-Cultural Patterns in Plant Use and Guide Medicinal Plant Discovery: An Example from Pterocarpus (Leguminosae). PLoS ONE, 2011, 6, e22275.	2.5	116
53	Extinction Risk and Diversification Are Linked in a Plant Biodiversity Hotspot. PLoS Biology, 2011, 9, e1000620.	5.6	112
54	The mahogany family "out-of-Africa― Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molecular Phylogenetics and Evolution, 2006, 40, 236-250.	2.7	111

#	Article	IF	CITATIONS
55	Iridaceae 'Out of Australasia'? Phylogeny, Biogeography, and Divergence Time Based on Plastid DNA Sequences. Systematic Botany, 2008, 33, 495-508.	0.5	108
56	The origins and diversification of C ₄ grasses and savannaâ€edapted ungulates. Global Change Biology, 2009, 15, 2397-2417.	9.5	103
57	A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Molecular Phylogenetics and Evolution, 2007, 44, 399-411.	2.7	102
58	Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions, 2009, 3, 27-43.	1.1	100
59	Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evolutionary Biology, 2011, 11, 341.	3.2	97
60	Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). Annals of Botany, 2011, 108, 1417-1432.	2.9	97
61	Metaâ€nnalysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecology and Evolution, 2021, 11, 4803-4815.	1.9	94
62	Molecular Phylogeny of Families Related to Celastrales Based on rbcL 5′ Flanking Sequences. Molecular Phylogenetics and Evolution, 1994, 3, 27-37.	2.7	89
63	Phylogeny of the Celastraceae Inferred from 26S Nuclear Ribosomal DNA, Phytochrome B, rbcL, atpB, and Morphology. Molecular Phylogenetics and Evolution, 2001, 19, 353-366.	2.7	89
64	Building Supertrees: An Empirical Assessment Using the Grass Family (Poaceae). Systematic Biology, 2002, 51, 136-150.	5.6	89
65	THE GEOGRAPHICAL PATTERN OF SPECIATION AND FLORAL DIVERSIFICATION IN THE NEOTROPICS: THE TRIBE SINNINGIEAE (GESNERIACEAE) AS A CASE STUDY. Evolution; International Journal of Organic Evolution, 2007, 61, 1641-1660.	2.3	86
66	FReD: The Floral Reflectance Database â€" A Web Portal for Analyses of Flower Colour. PLoS ONE, 2010, 5, e14287.	2.5	86
67	A decade of progress in plant molecular phylogenetics. Trends in Genetics, 2003, 19, 717-724.	6.7	79
68	The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132768.	2.6	77
69	Behavior and season affect crayfish detection and density inference using environmental <scp>DNA</scp> . Ecology and Evolution, 2017, 7, 7777-7785.	1.9	76
70	Phylogeny of the Celastraceae inferred from phytochrome B gene sequence and morphology. American Journal of Botany, 2001, 88, 313-325.	1.7	75
71	Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Annals of Botany, 2012, 110, 1515-1529.	2.9	75
72	Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190528.	4.0	75

#	Article	IF	Citations
73	Cross-cultural comparison of three medicinal floras and implications for bioprospecting strategies. Journal of Ethnopharmacology, 2011, 135, 476-487.	4.1	74
74	Viviparity stimulates diversification in an order of fish. Nature Communications, 2016, 7, 11271.	12.8	72
75	Assessing internal support with large phylogenetic DNA matrices. Molecular Phylogenetics and Evolution, 2003, 27, 528-539.	2.7	68
76	DNA barcoding of a large genus, <i>Aspalathus</i> L. (Fabaceae). Taxon, 2008, 57, 1317.	0.7	67
77	Higherâ€level classification in the angiosperms: new insights from the perspective of DNA sequence data. Taxon, 2000, 49, 685-704.	0.7	66
78	Development of a complex floral trait: The pollinatorâ€attracting petal spots of the beetle daisy, <i>Gorteria diffusa</i> (Asteraceae). American Journal of Botany, 2009, 96, 2184-2196.	1.7	64
79	Biogeography of Sulawesian Shrews: Testing for their Origin with a Parametric Bootstrap on Molecular Data. Molecular Phylogenetics and Evolution, 1998, 9, 567-571.	2.7	60
80	Phylogenetic selection of Narcissus species for drug discovery. Biochemical Systematics and Ecology, 2008, 36, 417-422.	1.3	59
81	NEUTRAL THEORY, PHYLOGENIES, AND THE RELATIONSHIP BETWEEN PHENOTYPIC CHANGE AND EVOLUTIONARY RATES. Evolution; International Journal of Organic Evolution, 2006, 60, 476-483.	2.3	56
82	The Genome of the "Great Speciator―Provides Insights into Bird Diversification. Genome Biology and Evolution, 2015, 7, 2680-2691.	2.5	55
83	Teasing Apart Molecular- Versus Fossil-based Error Estimates when Dating Phylogenetic Trees: A Case Study in the Birch Family (Betulaceae). Systematic Botany, 2005, 30, 118-133.	0.5	54
84	Convergent evolution of floral signals underlies the success of Neotropical orchids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130960.	2.6	54
85	Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae). Molecular Phylogenetics and Evolution, 2009, 51, 31-43.	2.7	51
86	Phylogeny, biogeography, and ecology of Ficus section Malvanthera (Moraceae). Molecular Phylogenetics and Evolution, 2008, 48, 12-22.	2.7	50
87	Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Botanical Journal of the Linnean Society, 2014, 174, 110-129.	1.6	45
88	Environmental causes for plant biodiversity gradients. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1645-1656.	4.0	44
89	Dissecting the plant–insect diversity relationship in the Cape. Molecular Phylogenetics and Evolution, 2009, 51, 94-99.	2.7	44
90	Environment, Area, and Diversification in the Speciesâ€Rich Flowering Plant Family Iridaceae. American Naturalist, 2005, 166, 418-425.	2.1	42

#	Article	IF	Citations
91	Evaluation of genetic isolation within an island flora reveals unusually widespread local adaptation and supports sympatric speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130342.	4.0	42
92	Polyphyletism of Celastrales Deduced from a Chloroplast Noncoding DNA Region. Molecular Phylogenetics and Evolution, 1997, 7, 145-157.	2.7	41
93	Biogeographical and phylogenetic origins of African fig species (Ficus section Galoglychia). Molecular Phylogenetics and Evolution, 2007, 43, 190-201.	2.7	40
94	Systematic Position of the Anomalous Genus <i>Cadia</i> and the Phylogeny of the Tribe Podalyrieae (Fabaceae). Systematic Botany, 2008, 33, 133-147.	0.5	39
95	Explaining disparities in species richness between Mediterranean floristic regions: a case study in <i>Gladiolus</i> (Iridaceae). Global Ecology and Biogeography, 2011, 20, 881-892.	5.8	37
96	Evidence of recent and continuous speciation in a biodiversity hotspot: a population genetic approach in southern African gladioli (<i>Gladiolus</i> ; Iridaceae). Molecular Ecology, 2010, 19, 4765-4782.	3.9	36
97	Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytologist, 2018, 217, 1254-1266.	7.3	36
98	Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. American Journal of Botany, 2021, 108, 1201-1216.	1.7	36
99	Comparative Phylogeography in Rainforest Trees from Lower Guinea, Africa. PLoS ONE, 2014, 9, e84307.	2.5	36
100	The atpB and rbcL promoters in plastid DNAs of a wide dicot range. Journal of Molecular Evolution, 1994, 38, 577-82.	1.8	35
101	How sympatric is speciation in the <i>Howea</i> palms of Lord Howe Island?. Molecular Ecology, 2009, 18, 3629-3638.	3.9	33
102	Towards Building the Tree of Life: A Simulation Study for All Angiosperm Genera. Systematic Biology, 2005, 54, 183-196.	5.6	30
103	Pollinators underestimated: A molecular phylogeny reveals widespread floral convergence in oil-secreting orchids (sub-tribe Coryciinae) of the Cape of South Africa. Molecular Phylogenetics and Evolution, 2009, 51, 100-110.	2.7	30
104	Ecological speciation in sympatric palms: 1. Gene expression, selection and pleiotropy. Journal of Evolutionary Biology, 2016, 29, 1472-1487.	1.7	29
105	Is Cladogenesis Heritable?. Systematic Biology, 2002, 51, 835-843.	5.6	28
106	EVOLUTIONARY RATES AND SPECIES DIVERSITY IN FLOWERING PLANTS. Evolution; International Journal of Organic Evolution, 2001, 55, 677-683.	2.3	28
107	A comparative analysis of the mechanisms underlying speciation on Lord Howe Island. Journal of Evolutionary Biology, 2013, 26, 733-745.	1.7	28
108	Large herbivores favour species diversity but have mixed impacts on phylogenetic community structure in an <scp>A</scp> frican savanna ecosystem. Journal of Ecology, 2013, 101, 614-625.	4.0	27

#	Article	IF	Citations
109	Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). BMC Plant Biology, 2013, 13, 219.	3.6	27
110	A comparative analysis of island floras challenges taxonomyâ€based biogeographical models of speciation. Evolution; International Journal of Organic Evolution, 2015, 69, 482-491.	2.3	27
111	Chloroplast DNA variation and parentage analysis in 55 apples. Theoretical and Applied Genetics, 1995, 90, 1138-1141.	3.6	26
112	Pollinator behaviour and plant speciation: can assortative mating and disruptive selection maintain distinct floral morphs in sympatry?. New Phytologist, 2010, 188, 426-436.	7.3	25
113	Ecological speciation in sympatric palms: 2. Pre―and postâ€₹ygotic isolation. Journal of Evolutionary Biology, 2016, 29, 2143-2156.	1.7	23
114	Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos. Journal of Applied Ecology, 2020, 57, 2234-2245.	4.0	23
115	Rate of gene sequence evolution and species diversification in flowering plants: a re–evaluation. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 603-607.	2.6	22
116	Phylogenetic relationships of Biebersteinia Stephan (Geraniaceae) inferred from rbcL and atpB sequence comparisons. Botanical Journal of the Linnean Society, 1998, 127, 149-158.	1.6	19
117	A phylogenetic analysis of the <scp>B</scp> ritish flora sheds light on the evolutionary and ecological factors driving plant invasions. Ecology and Evolution, 2014, 4, 4258-4269.	1.9	19
118	A phylogenetic approach towards understanding the drivers of plant invasiveness on Robben Island, South Africa. Botanical Journal of the Linnean Society, 2013, 172, 142-152.	1.6	18
119	Evidence of positive selection associated with placental loss in tiger sharks. BMC Evolutionary Biology, 2016, 16, 126.	3.2	18
120	A Plea for DNA Banking. Science, 2004, 304, 1445b-1445b.	12.6	17
121	Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora. BMC Evolutionary Biology, 2011, 11, 39.	3.2	17
122	Speciation in Howea Palms Occurred in Sympatry, Was Preceded by Ancestral Admixture, and Was Associated with Edaphic and Phenological Adaptation. Molecular Biology and Evolution, 2019, 36, 2682-2697.	8.9	17
123	Effects of ingested phytoecdysteroids in the female soft tickOrnithodoros moubata. Experientia, 1995, 51, 596-600.	1.2	16
124	Phylogeny Reconstruction and Functional Constraints in Organellar Genomes: Plastid atpB and rbcL Sequences Versus Animal Mitochondrion. Systematic Biology, 2002, 51, 638-647.	5.6	16
125	The Nutritional Profiles of Five Important Edible Insect Species From West Africaâ€"An Analytical and Literature Synthesis. Frontiers in Nutrition, 2021, 8, 792941.	3.7	16
126	Phylotranscriptomic Insights into the Diversification of Endothermic <i>Thunnus</i> Tunas. Molecular Biology and Evolution, 2019, 36, 84-96.	8.9	15

#	Article	IF	Citations
127	The genetic basis and evolution of red blood cell sickling in deer. Nature Ecology and Evolution, 2018, 2, 367-376.	7.8	14
128	Ecological speciation in sympatric palms: 4. Demographic analyses support speciation of Howea in the face of high gene flow. Evolution; International Journal of Organic Evolution, 2019, 73, 1996-2002.	2.3	14
129	Ecological speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species divergence in <i>Howea</i> . Evolution; International Journal of Organic Evolution, 2019, 73, 1986-1995.	2.3	13
130	Elasmobranch diversity across a remote coral reef atoll revealed through environmental DNA metabarcoding. Zoological Journal of the Linnean Society, 2022, 196, 593-607.	2.3	13
131	Sympatric plant speciation in islands? (Reply). Nature, 2006, 443, E12-E13.	27.8	12
132	Genetics and bisexuality. Nature, 2007, 445, 158-159.	27.8	12
133	Understanding the origins and evolution of the world's biodiversity hotspots: The biota of the African †Cape Floristic Region' as a case study. Molecular Phylogenetics and Evolution, 2009, 51, 1-4.	2.7	12
134	A phylogenetic study of Pimelea and Thecanthes (Thymelaeaceae): evidence from plastid and nuclear ribosomal DNA sequence data. Australian Systematic Botany, 2010, 23, 270.	0.9	12
135	Why do we pick similar mates, or do we?. Biology Letters, 2021, 17, 20210463.	2.3	12
136	Substitutions in the Glycogenin-1 Gene Are Associated with the Evolution of Endothermy in Sharks and Tunas. Genome Biology and Evolution, 2016, 8, 3011-3021.	2.5	11
137	Do Global Diversity Patterns of Vertebrates Reflect Those of Monocots?. PLoS ONE, 2013, 8, e56979.	2.5	10
138	Sympatric speciation in mountain roses (Metrosideros) on an oceanic island. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190542.	4.0	10
139	Ecology rather than people restrict gene flow in Okavangoâ€Kalahari lions. Animal Conservation, 2020, 23, 502-515.	2.9	10
140	A comparative analysis of the factors promoting deer invasion. Biological Invasions, 2012, 14, 2271-2281.	2.4	9
141	Understanding same-sex sexual behaviour requires thorough testing rather than reinvention of theory. Nature Ecology and Evolution, 2020, 4, 784-785.	7.8	9
142	A reassessment of <i>Hemizygia</i> and <i>Syncolostemon</i> (Ocimeae—Lamiaceae). Taxon, 2006, 55, 941-958.	0.7	8
143	The orchid flora of Cocos Island National Park, Puntarenas, Costa Rica. Botanical Journal of the Linnean Society, 2011, 166, 20-39.	1.6	8
144	Systems thinking creates opportunities for a circular economy and sustainable palm agriculture in Africa. Current Research in Environmental Sustainability, 2020, 1, 31-34.	3.5	8

#	Article	IF	CITATIONS
145	Testing bats in rehabilitation for <scp>SARSâ€CoV</scp> â€2 before release into the wild. Conservation Science and Practice, 2022, 4, .	2.0	8
146	Complete mitochondrial genome of the gray reef shark, <i>Carcharhinus amblyrhynchos</i> (Carcharhiniformes: Carcharhinidae). Mitochondrial DNA Part B: Resources, 2020, 5, 2080-2082.	0.4	7
147	Phylogeny of the Celastraceae inferred from phytochrome B gene sequence and morphology. American Journal of Botany, 2001, 88, 313-25.	1.7	7
148	Quick detection of a rare species: Forensic swabs of survey tubes for hazel dormouse <i>Muscardinus avellanarius</i> urine. Methods in Ecology and Evolution, 2021, 12, 818-827.	5.2	6
149	Mitochondrial genome of the Silvertip shark, <i>Carcharhinus albimarginatus, </i> from the British Indian Ocean Territory. Mitochondrial DNA Part B: Resources, 2020, 5, 2085-2086.	0.4	6
150	Conservation genetics of native and European-introduced Chinese water deer (Hydropotes inermis). Zoological Journal of the Linnean Society, 2021, 191, 1181-1191.	2.3	5
151	Global monocot diversification: geography explains variation in species richness better than environment or biology. Botanical Journal of the Linnean Society, 2016, , .	1.6	4
152	Phylogenetics of <i>Ochna </i> (Ochnaceae) and a new infrageneric classification. Botanical Journal of the Linnean Society, 2022, 198, 361-381.	1.6	4
153	Fig–fig wasp mutualism: the fall of the strict cospeciation paradigm?. , 2011, , 68-102.		4
154	Simple phylogenetic tree searches easily "succeed―with large matrices of single genes. Taxon, 2006, 55, 573-578.	0.7	3
155	The De-Scent of Sexuality: Should We Smell a Rat?. Archives of Sexual Behavior, 2021, 50, 2283-2288.	1.9	2
156	Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis. BMC Genomics, 2020, 21, 642.	2.8	2
157	Dedication: Christian Lexer (1971–2019). Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200232.	4.0	2
158	Evolution of Homosexuality. , 2016, , 1-8.		2
159	NEUTRAL THEORY, PHYLOGENIES, AND THE RELATIONSHIP BETWEEN PHENOTYPIC CHANGE AND EVOLUTIONARY RATES. Evolution; International Journal of Organic Evolution, 2006, 60, 476.	2.3	1
160	Evolution of Homosexuality., 2021,, 2525-2532.		1
161	SARS-CoV2 and Air Pollution Interactions: Airborne Transmission and COVID-19. Molecular Frontiers Journal, 2022, 06, 1-6.	1.1	1
162	Phylogénie moléculaire du genre <i>Moraea</i> (Iridaceae: Irideae): apports du séquençage d'une régior d'ADN chloroplastique. Acta Botanica Gallica, 2003, 150, 345-353.	10.9	0

VINCENT SAVOLAINEN

#	Article	IF	CITATIONS
163	Developing a new variety of kentia palms (<i>Howea forsteriana</i>): up-regulation of cytochrome b561 and chalcone synthase is associated with red colouration of the stems. Botany Letters, 2018, 165, 241-247.	1.4	0
164	How predictable is genome evolution?. ELife, 2019, 8, .	6.0	0