Omar F Mohammed List of Publications by Year in descending order Source: https://exaly.com/author-pdf/1677016/publications.pdf Version: 2024-02-01 315 papers 33,121 citations 83 h-index 172 g-index 320 all docs 320 docs citations times ranked 320 23998 citing authors | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519-522. | 6.0 | 4,156 | | 2 | High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 2015, 6, 7586. | 5.8 | 1,478 | | 3 | All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561, 88-93. | 13.7 | 1,274 | | 4 | Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725. | 11.1 | 917 | | 5 | Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140. | 19.8 | 894 | | 6 | Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Letters, 2016, 1, 32-37. | 8.8 | 752 | | 7 | Bidentate Ligand-Passivated CsPbl ₃ Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 562-565. | 6.6 | 745 | | 8 | State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981. | 7.3 | 705 | | 9 | CH ₃ NH ₃ PbCl ₃ Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. Journal of Physical Chemistry Letters, 2015, 6, 3781-3786. | 2.1 | 636 | | 10 | Pure Cs ₄ PbBr ₆ : Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Letters, 2016, 1, 840-845. | 8.8 | 481 | | 11 | Sequential Proton Transfer Through Water Bridges in Acid-Base Reactions. Science, 2005, 310, 83-86. | 6.0 | 480 | | 12 | Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2015, 6, 5027-5033. | 2.1 | 466 | | 13 | Single-Crystal MAPbl ₃ Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Letters, 2019, 4, 1258-1259. | 8.8 | 424 | | 14 | Engineering Interfacial Charge Transfer in CsPbBr ₃ Perovskite Nanocrystals by Heterovalent Doping. Journal of the American Chemical Society, 2017, 139, 731-737. | 6.6 | 406 | | 15 | Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Letters, 2021, 6, 739-768. | 8.8 | 403 | | 16 | Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters, 2017, 2, 889-896. | 8.8 | 367 | | 17 | Inorganic Lead Halide Perovskite Single Crystals: Phaseâ€Selective Lowâ€Temperature Growth, Carrier Transport Properties, and Selfâ€Powered Photodetection. Advanced Optical Materials, 2017, 5, 1600704. | 3.6 | 362 | | 18 | Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. ACS Nano, 2019, 13, 2520-2525. | 7.3 | 346 | | # | Article | IF | CITATIONS | |----|--|-------------|-----------| | 19 | Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. Journal of Physical Chemistry Letters, 2016, 7, 295-301. | 2.1 | 332 | | 20 | Templated Atomâ€Precise Galvanic Synthesis and Structure Elucidation of a [Ag ₂₄ Au(SR) ₁₈] ^{â^²} Nanocluster. Angewandte Chemie - International Edition, 2016, 55, 922-926. | 7.2 | 306 | | 21 | Zero-Dimensional Cs ₄ PbBr ₆ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 961-965. | 2.1 | 299 | | 22 | Solutionâ€Grown Monocrystalline Hybrid Perovskite Films for Holeâ€Transporterâ€Free Solar Cells.
Advanced Materials, 2016, 28, 3383-3390. | 11.1 | 298 | | 23 | Atomic-Level Doping of Metal Clusters. Accounts of Chemical Research, 2018, 51, 3094-3103. | 7.6 | 294 | | 24 | Gold Doping of Silver Nanoclusters: A 26â€Fold Enhancement in the Luminescence Quantum Yield. Angewandte Chemie - International Edition, 2016, 55, 5749-5753. | 7.2 | 278 | | 25 | Perovskite Oxide SrTiO ₃ as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 28494-28501. | 1.5 | 251 | | 26 | Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767. | 4.5 | 251 | | 27 | Giant Photoluminescence Enhancement in CsPbCl ₃ Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation. ACS Energy Letters, 2018, 3, 2301-2307. | 8.8 | 244 | | 28 | High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Science and Applications, 2019, 8, 94. | 7.7 | 225 | | 29 | Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976. | 11.7 | 222 | | 30 | Perovskite Nanocrystals as a Color Converter for Visible Light Communication. ACS Photonics, 2016, 3, 1150-1156. | 3.2 | 221 | | 31 | Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798. | 8.8 | 208 | | 32 | Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7245-7249. | 6.6 | 203 | | 33 | Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy and Environmental Science, 2021, 14, 4463-4473. | 15.6 | 203 | | 34 | Inside Perovskites: Quantum Luminescence from Bulk Cs ₄ PbBr ₆ Single Crystals. Chemistry of Materials, 2017, 29, 7108-7113. | 3.2 | 200 | | 35 | Base-Induced Solvent Switches in Acid–Base Reactions. Angewandte Chemie - International Edition, 2007, 46, 1458-1461. | 7. 2 | 197 | | 36 | Ultrathin Cu ₂ 0 as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8, 6173-6179. | 2.8 | 191 | | # | Article | IF | Citations | |----|--|------|-----------| | 37 | Molecular behavior of zero-dimensional perovskites. Science Advances, 2017, 3, e1701793. | 4.7 | 187 | | 38 | Tunable Multipolar Surface Plasmons in 2D Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene Flakes. ACS Nano, 2018, 12, 8485-8493. | 7.3 | 179 | | 39 | MXenes for Plasmonic Photodetection. Advanced Materials, 2019, 31, e1807658. | 11.1 | 175 | | 40 | Room-Temperature Engineering of All-Inorganic Perovskite Nanocrsytals with Different Dimensionalities. Chemistry of Materials, 2017, 29, 8978-8982. | 3.2 | 174 | | 41 | Direct-Indirect Nature of the Bandgap in Lead-Free Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 3173-3177. | 2.1 | 172 | | 42 | Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbl ₃ Inverted Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 657-662. | 8.8 | 171 | | 43 | Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films.
Nature Communications, 2016, 7, 13407. | 5.8 | 170 | | 44 | Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. Journal of Physical Chemistry Letters, 2019, 10, 2629-2640. | 2.1 | 162 | | 45 | The Role of Surface Tension in the Crystallization of Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1782-1788. | 8.8 | 155 | | 46 | Engineering of CH ₃ NH ₃ Pbl ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie - International Edition, 2016, 55, 10686-10690. | 7.2 | 152 | | 47 | Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters. Journal of the American Chemical Society, 2017, 139, 4318-4321. | 6.6 | 152 | | 48 | 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy and Environmental Science, 2021, 14, 2263-2268. | 15.6 | 149 | | 49 | Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11828-11836. | 4.0 | 145 | | 50 | Point Defects and Green Emission in Zero-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 5490-5495. | 2.1 | 143 | | 51 | Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity. Chemistry of Materials, 2015, 27, 8237-8247. | 3.2 | 140 | | 52 | Surface Restructuring of Hybrid Perovskite Crystals. ACS Energy Letters, 2016, 1, 1119-1126. | 8.8 | 140 | | 53 | Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Communications Physics, 2018, 1 , . | 2.0 | 135 | | 54 | Intrinsic Lead Ion Emissions in Zero-Dimensional Cs ₄ PbBr ₆ Nanocrystals. ACS Energy Letters, 2017, 2, 2805-2811. | 8.8 | 133 | | # | Article | IF | CITATIONS | |----|---
------|-----------| | 55 | Assembly of Atomically Precise Silver Nanoclusters into Nanocluster-Based Frameworks. Journal of the American Chemical Society, 2019, 141, 9585-9592. | 6.6 | 132 | | 56 | Thermochromic Perovskite Inks for Reversible Smart Window Applications. Chemistry of Materials, 2017, 29, 3367-3370. | 3.2 | 130 | | 57 | CsPb ₂ Br ₅ Single Crystals: Synthesis and Characterization. ChemSusChem, 2017, 10, 3746-3749. | 3.6 | 130 | | 58 | Photoluminescence Origin of Zero-Dimensional Cs ₄ PbBr ₆ Perovskite. ACS Energy Letters, 2020, 5, 87-99. | 8.8 | 128 | | 59 | The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Applied Physics Letters, 2015, 106, . | 1.5 | 126 | | 60 | Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Dose Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 16114-16121. | 7.2 | 126 | | 61 | 2D Organic–Inorganic Hybrid Thin Films for Flexible UV–Visible Photodetectors. Advanced Functional
Materials, 2017, 27, 1605554. | 7.8 | 125 | | 62 | Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. Journal of Physical Chemistry Letters, 2018, 9, 5474-5480. | 2.1 | 119 | | 63 | Light-Induced Self-Assembly of Cubic CsPbBr ₃ Perovskite Nanocrystals into Nanowires. Chemistry of Materials, 2019, 31, 6642-6649. | 3.2 | 119 | | 64 | The Benefit and Challenges of Zero-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4131-4138. | 2.1 | 118 | | 65 | Scanning ultrafast electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14993-14998. | 3.3 | 117 | | 66 | Highly Stable Phosphonateâ€Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production. Advanced Materials, 2020, 32, e1906368. | 11.1 | 117 | | 67 | Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr ₃ Perovskite. ACS Energy Letters, 2019, 4, 789-795. | 8.8 | 116 | | 68 | Metal Halide Perovskites for Solarâ€toâ€Chemical Fuel Conversion. Advanced Energy Materials, 2020, 10, 1902433. | 10.2 | 115 | | 69 | Structural Evolution of the Chromophore in the Primary Stages of Trans/Cis Isomerization in Photoactive Yellow Protein. Journal of the American Chemical Society, 2005, 127, 18100-18106. | 6.6 | 110 | | 70 | Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9970-9986. | 4.0 | 109 | | 71 | Templated Atomâ€Precise Galvanic Synthesis and Structure Elucidation of a [Ag ₂₄ Au(SR) ₁₈] ^{â^²} Nanocluster. Angewandte Chemie, 2016, 128, 934-938. | 1.6 | 106 | | 72 | Ultrahigh Carrier Mobility Achieved in Photoresponsive Hybrid Perovskite Films via Coupling with Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2017, 29, 1602432. | 11.1 | 106 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 73 | Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn ₂ SnO ₄ Electron Transporting Layer: Interface Matters. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28404-28411. | 4.0 | 103 | | 74 | Pyridine-Induced Dimensionality Change in Hybrid Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 4393-4400. | 3.2 | 100 | | 75 | Successes and Challenges of Core/Shell Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 1340-1357. | 8.8 | 100 | | 76 | Facile Synthesis and High Performance of a New Carbazole-Based Hole-Transporting Material for Hybrid Perovskite Solar Cells. ACS Photonics, 2015, 2, 849-855. | 3.2 | 99 | | 77 | 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 3169-3186. | 11.7 | 99 | | 78 | Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt ₂ Ag ₂₃ Cl ₇ (PPh ₃) ₁₀] Nanoclusters. Journal of the American Chemical Society, 2017, 139, 1053-1056. | 6.6 | 98 | | 79 | Quantum Confinement-Tunable Ultrafast Charge Transfer at the PbS Quantum Dot and Phenyl-C $<$ sub $>61sub>-butyric Acid Methyl Ester Interface. Journal of the American Chemical Society, 2014, 136, 6952-6959.$ | 6.6 | 97 | | 80 | Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals. ACS Nano, 2019, 13, 12621-12629. | 7.3 | 96 | | 81 | Solvent-Dependent Photoacidity State of Pyranine Monitored by Transient Mid-Infrared Spectroscopy. ChemPhysChem, 2005, 6, 625-636. | 1.0 | 94 | | 82 | Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8538-8545. | 3.2 | 92 | | 83 | The Surface of Hybrid Perovskite Crystals: A Boon or Bane. ACS Energy Letters, 2017, 2, 846-856. | 8.8 | 91 | | 84 | Single Crystals: The Next Big Wave of Perovskite Optoelectronics. , 2020, 2, 184-214. | | 89 | | 85 | Defect Passivation in Perovskite Solar Cells by Cyanoâ€Based Ï€â€Conjugated Molecules for Improved Performance and Stability. Advanced Functional Materials, 2020, 30, 2002861. | 7.8 | 87 | | 86 | CsMnBr ₃ : Lead-Free Nanocrystals with High Photoluminescence Quantum Yield and Picosecond Radiative Lifetime., 2021, 3, 290-297. | | 86 | | 87 | Large-Area Perovskite-Related Copper Halide Film for High-Resolution Flexible X-ray Imaging
Scintillation Screens. ACS Energy Letters, 2022, 7, 844-846. | 8.8 | 86 | | 88 | Carrier dynamics of a visible-light-responsive Ta ₃ N ₅ photoanode for water oxidation. Physical Chemistry Chemical Physics, 2015, 17, 2670-2677. | 1.3 | 85 | | 89 | 4D Scanning Ultrafast Electron Microscopy: Visualization of Materials Surface Dynamics. Journal of the American Chemical Society, 2011, 133, 7708-7711. | 6.6 | 84 | | 90 | A Titanium Metal–Organic Framework with Visible‣ightâ€Responsive Photocatalytic Activity.
Angewandte Chemie - International Edition, 2020, 59, 13468-13472. | 7.2 | 84 | | # | Article | IF | Citations | |-----|--|----------------------------|-----------| | 91 | Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths. Journal of Physical Chemistry Letters, 2017, 8, 4386-4390. | 2.1 | 83 | | 92 | Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411. | 3.2 | 82 | | 93 | Generation of Multiple Excitons in Ag ₂ S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation. Journal of Physical Chemistry Letters, 2014, 5, 659-665. | 2.1 | 81 | | 94 | [Cu ₈₁ (PhS) ₄₆ (^{<i>t</i>} BuNH ₂) ₁₀ (H) ₃₂) Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. Journal of the American Chemical Society, 2020, 142, 8696-8705. | sub>] <sup
6.6</sup
 | >3+ | | 95 | Water-Induced Dimensionality Reduction in Metal-Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 14128-14134. | 1.5 | 78 | | 96 | Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101662. | 10.2 | 77 | | 97 | Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing. Chemistry of Materials, 2018, 30, 2719-2725. | 3.2 | 76 | | 98 | [Cu ₆₁ (S ^t Bu) ₂₆ S ₆ Cl ₆ H ₁₄] ^{+<a a="" core–shell="" nanocluster="" quasi-<i="" superatom="" with="">jan "18-Crown-6―Metal-Sulfide-like Stabilizing Belt., 2019, 1, 297-302.} | :/sup>: | 76 | | 99 | Modulation of Broadband Emissions in Two-Dimensional ⟠100⟠©-Oriented Ruddlesden†Popper Hybrid Perovskites. ACS Energy Letters, 2020, 5, 2149-2155. | 8.8 | 75 | | 100 | Excited-State Dynamics of Nitroperylene in Solution: Solvent and Excitation Wavelength Dependence. Journal of Physical Chemistry A, 2008, 112, 3823-3830. | 1.1 | 74 | | 101 | Longâ€Lived Chargeâ€Transfer State Induced by Spinâ€Orbit Charge Transfer Intersystem Crossing (SOCTâ€ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angewandte Chemie - International Edition, 2020, 59, 11591-11599. | 7.2 | 74 | | 102 | Perovskite-Nanosheet Sensitizer for Highly Efficient Organic X-ray Imaging Scintillator. ACS Energy Letters, 2022, 7, 10-16. | 8.8 | 72 | | 103 | Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3-16. | 4.0 | 71 | | 104 | Ultrafast Branching of Reaction Pathways in 2-(2′-Hydroxyphenyl)benzothiazole in Polar Acetonitrile Solution. Journal of Physical Chemistry A, 2011, 115, 7550-7558. | 1.1 | 70 | | 105 | Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing.
ACS Applied Materials & Interfaces, 2018, 10, 11399-11405. | 4.0 | 70 | | 106 | Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 2018, 3, 1492-1498. | 8.8 | 70 | | 107 | Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chemical Reviews, 2021, 121, 12112-12180. | 23.0 | 70 | | 108 | Excited-State Structure Determination of the Green Fluorescent Protein Chromophore. Journal of the American Chemical Society, 2005, 127, 11214-11215. | 6.6 | 69 | | # | Article | IF | CITATIONS | |-----
---|-----|-----------| | 109 | Aqueous bimolecular proton transfer in acid–base neutralization. Chemical Physics, 2007, 341, 240-257. | 0.9 | 69 | | 110 | Ultrafast electron injection at the cationic porphyrin–graphene interface assisted by molecular flattening. Chemical Communications, 2014, 50, 10452. | 2.2 | 68 | | 111 | Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO ₂ Single Crystals by Femtosecond Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 8925-8932. | 1.5 | 68 | | 112 | Nano surface engineering of Mn ₂ O ₃ for potential light-harvesting application. Journal of Materials Chemistry C, 2015, 3, 8200-8211. | 2.7 | 65 | | 113 | Direct Femtosecond Observation of Tight and Loose Ion Pairs upon Photoinduced Bimolecular Electron Transfer. Angewandte Chemie - International Edition, 2008, 47, 9044-9048. | 7.2 | 63 | | 114 | Ligand-Free Nanocrystals of Highly Emissive Cs ₄ PbBr ₆ Perovskite. Journal of Physical Chemistry C, 2018, 122, 6493-6498. | 1.5 | 63 | | 115 | Layer-edge device of two-dimensional hybrid perovskites. Nature Communications, 2018, 9, 5196. | 5.8 | 63 | | 116 | Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling. Journal of Physical Chemistry A, 2014, 118, 3090-3099. | 1.1 | 62 | | 117 | Gold Doping of Silver Nanoclusters: A 26â€Fold Enhancement in the Luminescence Quantum Yield.
Angewandte Chemie, 2016, 128, 5843-5847. | 1.6 | 62 | | 118 | Direct versus ligand-exchange synthesis of [PtAg ₂₈ (BDT) ₁₂ (TPP) ₄] ^{4a^'} nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties. Nanoscale, 2017, 9, 9529-9536. | 2.8 | 62 | | 119 | Access to Highly Efficient Energy Transfer in Metal–Organic Frameworks via Mixed Linkers Approach.
Journal of the American Chemical Society, 2020, 142, 8580-8584. | 6.6 | 62 | | 120 | Double Charged Surface Layers in Lead Halide Perovskite Crystals. Nano Letters, 2017, 17, 2021-2027. | 4.5 | 60 | | 121 | Solutionâ€Processed Visibleâ€Blind Ultraviolet Photodetectors with Nanosecond Response Time and High Detectivity. Advanced Optical Materials, 2019, 7, 1900506. | 3.6 | 60 | | 122 | Efficient Visibleâ€Light Driven Photothermal Conversion of CO ₂ to Methane by Nickel Nanoparticles Supported on Barium Titanate. Advanced Functional Materials, 2021, 31, 2008244. | 7.8 | 60 | | 123 | Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores.
Chemical Science, 2016, 7, 3621-3631. | 3.7 | 59 | | 124 | Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbl ₃ Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 13302-13310. | 6.6 | 59 | | 125 | Tellurium-Based Double Perovskites A ₂ TeX ₆ with Tunable Band Gap and Long Carrier Diffusion Length for Optoelectronic Applications. ACS Energy Letters, 2019, 4, 228-234. | 8.8 | 58 | | 126 | Charge Transfer Assisted by Collective Hydrogenâ€Bonding Dynamics. Angewandte Chemie - International Edition, 2009, 48, 6251-6256. | 7.2 | 56 | | # | Article | IF | Citations | |-----|---|------|-----------| | 127 | Reversible Band Gap Narrowing of Snâ€Based Hybrid Perovskite Single Crystal with Excellent Phase Stability. Angewandte Chemie - International Edition, 2018, 57, 14868-14872. | 7.2 | 56 | | 128 | Compositionally Screened Eutectic Catalytic Coatings on Halide Perovskite Photocathodes for Photoassisted Selective CO ₂ Reduction. ACS Energy Letters, 2019, 4, 1279-1286. | 8.8 | 56 | | 129 | Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nature Communications, 2021, 12, 4831. | 5.8 | 56 | | 130 | Stimuli-responsive switchable halide perovskites: Taking advantage of instability. Joule, 2021, 5, 2027-2046. | 11.7 | 56 | | 131 | Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots. ACS Photonics, 2014, 1, 285-292. | 3.2 | 54 | | 132 | Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite?. Advanced Energy Materials, 2019, 9, 1900084. | 10.2 | 54 | | 133 | Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C, 2016, 4, 2545-2552. | 2.7 | 53 | | 134 | Structurally Tunable Two-Dimensional Layered Perovskites: From Confinement and Enhanced Charge Transport to Prolonged Hot Carrier Cooling Dynamics. Journal of Physical Chemistry Letters, 2020, 11, 5705-5718. | 2.1 | 53 | | 135 | Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy, 2020, 73, 104801. | 8.2 | 53 | | 136 | Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter, 2022, 5, 253-265. | 5.0 | 53 | | 137 | Single-step colloidal quantum dot films for infrared solar harvesting. Applied Physics Letters, 2016, 109, . | 1.5 | 52 | | 138 | Pillar[5]areneâ€Stabilized Silver Nanoclusters: Extraordinary Stability and Luminescence Enhancement Induced by Hostâ€"Guest Interactions. Angewandte Chemie - International Edition, 2019, 58, 15665-15670. | 7.2 | 52 | | 139 | Defect-Triggered Phase Transition in Cesium Lead Halide Perovskite Nanocrystals. , 2019, 1, 185-191. | | 51 | | 140 | [Cu ₁₅ (PPh ₃) ₆ (PET) ₁₃] ²⁺ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. Small, 2021, 17, e2006839. | 5.2 | 50 | | 141 | Effect of Zincâ€Doping on the Reduction of the Hotâ€Carrier Cooling Rate in Halide Perovskites.
Angewandte Chemie - International Edition, 2021, 60, 10957-10963. | 7.2 | 50 | | 142 | Exciton Self-Trapping for White Emission in 100-Oriented Two-Dimensional Perovskites via Halogen Substitution. ACS Energy Letters, 2022, 7, 453-460. | 8.8 | 50 | | 143 | Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires.
Angewandte Chemie - International Edition, 2019, 58, 16077-16081. | 7.2 | 49 | | 144 | Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2021, 143, 5470-5480. | 6.6 | 49 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 145 | Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Accounts of Chemical Research, 2022, 55, 262-274. | 7.6 | 49 | | 146 | Shape Control of Metal Halide Perovskite Single Crystals: From Bulk to Nanoscale. Chemistry of Materials, 2020, 32, 7602-7617. | 3.2 | 46 | | 147 | [Cu ₃₆ H ₁₀ (PET) ₂₄ (PPh ₃) ₆ Cl ₂] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society, 2021, 143, 11026-11035. | 6.6 | 46 | | 148 | Boosting Self-Trapped Emissions in Zero-Dimensional Perovskite Heterostructures. Chemistry of Materials, 2020, 32, 5036-5043. | 3.2 | 46 | | 149 | Sequential Merocyanine Product Isomerization Following Femtosecond UV Excitation of a Spiropyran. Journal of Physical Chemistry A, 2005, 109, 8962-8968. | 1.1 | 45 | | 150 | Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and Molecular Acceptors. Journal of Physical Chemistry Letters, 2016, 7, 3913-3919. | 2.1 | 43 | | 151 | Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals. ACS Sustainable Chemistry and Engineering, 2020, 8, 15772-15781. | 3.2 | 43 | | 152 | Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping. Journal of Chemical Physics, 2020, 152, 020902. | 1.2 | 42 | | 153 | Doping Induces Structural Phase Transitions in All-Inorganic Lead Halide Perovskite Nanocrystals. , 2020, 2, 367-375. | | 42 | | 154 | Emergence of multiple fluorophores in individual cesium lead bromide nanocrystals. Nature Communications, 2019, 10, 2930. | 5.8 | 41 | | 155 | [Cu ₂₃ (PhSe) ₁₆ (Ph ₃ P) ₈ (H) ₆] · BF _{Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly., 2021, 3, 90-99.} | 4: | 41 | | 156 | Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via Rashba band splitting. Nature Communications, 2021, 12, 3995. | 5.8 | 41 | | 157 | Primary Peptide Folding Dynamics Observed with Ultrafast Temperature Jump. Angewandte Chemie -
International Edition, 2009, 48, 5628-5632. | 7.2 | 40 | | 158 | Speed limit of protein folding evidenced in secondary structure dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16622-16627. | 3.3 | 40 | | 159 | Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 3884-3890. | 2.1 | 40 | | 160 | Solvent-Dependent Excited-State Hydrogen Transfer and Intersystem Crossing in 2-(2′-Hydroxyphenyl)-Benzothiazole. Journal of Physical Chemistry B, 2015, 119, 2596-2603. | 1.2 | 40 | | 161 | Outstanding Challenges of Zero-Dimensional Perovskite
Materials. Journal of Physical Chemistry Letters, 2019, 10, 5886-5888. | 2.1 | 40 | | 162 | MAPbl ₃ Single Crystals Free from Hole-Trapping Centers for Enhanced Photodetectivity. ACS Energy Letters, 2019, 4, 2579-2584. | 8.8 | 40 | | # | Article | IF | Citations | |-----|---|------|-----------| | 163 | Twisted BODIPY derivative: intersystem crossing, electron spin polarization and application as a novel photodynamic therapy reagent. Physical Chemistry Chemical Physics, 2021, 23, 8641-8652. | 1.3 | 40 | | 164 | Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement. Nature Photonics, 2022, 16, 485-490. | 15.6 | 40 | | 165 | Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy. Journal of Physical Chemistry Letters, 2016, 7, 985-994. | 2.1 | 39 | | 166 | Ultrafast static and diffusion-controlled electron transfer at Ag ₂₉ nanocluster/molecular acceptor interfaces. Nanoscale, 2016, 8, 5412-5416. | 2.8 | 39 | | 167 | Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. Journal of Physical Chemistry Letters, 2017, 8, 137-143. | 2.1 | 39 | | 168 | Direct Femtosecond Observation of Charge Carrier Recombination in Ternary Semiconductor Nanocrystals: The Effect of Composition and Shelling. Journal of Physical Chemistry C, 2015, 119, 3439-3446. | 1.5 | 38 | | 169 | Comprehensive Study of All-Solid-State Z-Scheme Photocatalytic Systems of ZnO/Pt/CdZnS. ACS Omega, 2017, 2, 4828-4837. | 1.6 | 38 | | 170 | Layer-Dependent Coherent Acoustic Phonons in Two-Dimensional Ruddlesden–Popper Perovskite Crystals. Journal of Physical Chemistry Letters, 2019, 10, 5259-5264. | 2.1 | 38 | | 171 | Enhanced Optoelectronic Performance of a Passivated Nanowireâ€Based Device: Key Information from Realâ€Space Imaging Using 4D Electron Microscopy. Small, 2016, 12, 2313-2320. | 5.2 | 37 | | 172 | Visible-Light Copper Nanocluster Catalysis for the C–N Coupling of Aryl Chlorides at Room Temperature. Journal of the American Chemical Society, 2022, 144, 12052-12061. | 6.6 | 37 | | 173 | Photophysics of Organometallic Platinum(II) Derivatives of the Diketopyrrolopyrrole Chromophore. Journal of Physical Chemistry A, 2014, 118, 11735-11743. | 1.1 | 36 | | 174 | Impact of Metal Ions in Porphyrinâ€Based Applied Materials for Visibleâ€Light Photocatalysis: Key Information from Ultrafast Electronic Spectroscopy. Chemistry - A European Journal, 2014, 20, 10475-10483. | 1.7 | 36 | | 175 | Metal Halide Perovskite and Phosphorus Doped g-C ₃ N ₄ Bulk Heterojunctions for Air-Stable Photodetectors. ACS Energy Letters, 2019, 4, 2315-2322. | 8.8 | 36 | | 176 | Porousâ€"Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis. ACS Applied Materials & Distribution (1998) (1 | 4.0 | 35 | | 177 | Simultaneous Generation of Different Types of Ion Pairs upon Charge-Transfer Excitation of a Donorâ ⁻ Acceptor Complex Revealed by Ultrafast Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2008, 112, 5804-5809. | 1.1 | 34 | | 178 | Molecular-structure Control of Ultrafast Electron Injection at Cationic Porphyrin–CdTe Quantum Dot Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 791-795. | 2.1 | 34 | | 179 | Surface Effect on 2D Hybrid Perovskite Crystals: Perovskites Using an Ethanolamine Organic Layer as an Example. Advanced Materials, 2018, 30, e1804372. | 11.1 | 34 | | 180 | Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit. Journal of Materials Chemistry A, 2015, 3, 6733-6738. | 5.2 | 33 | | # | Article | IF | Citations | |-----|--|------|-----------| | 181 | Impressive near-infrared brightness and singlet oxygen generation from strategic
lanthanide–porphyrin double-decker complexes in aqueous solution. Light: Science and Applications,
2019, 8, 46. | 7.7 | 33 | | 182 | Large Polaron Self-Trapped States in Three-Dimensional Metal-Halide Perovskites. , 2020, 2, 20-27. | | 33 | | 183 | Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10022-10027. | 4.0 | 32 | | 184 | Luminescence and Stability Enhancement of Inorganic Perovskite Nanocrystals via Selective Surface Ligand Binding. ACS Nano, 2021, 15, 17998-18005. | 7.3 | 32 | | 185 | A Layerâ€byâ€Layer ZnO Nanoparticle–PbS Quantum Dot Selfâ€Assembly Platform for Ultrafast Interfacial Electron Injection. Small, 2015, 11, 112-118. | 5.2 | 31 | | 186 | Delayed Photoluminescence and Modified Blinking Statistics in Alumina-Encapsulated Zero-Dimensional Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6780-6787. | 2.1 | 31 | | 187 | Hydrated Mg <i></i> V ₅ O ₁₂ Cathode with Improved Mg ²⁺ Storage Performance. Advanced Energy Materials, 2020, 10, 2002128. | 10.2 | 31 | | 188 | Photoinduced Bimolecular Electron Transfer Investigated by Femtosecond Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 13676-13680. | 1.1 | 30 | | 189 | An Aqueous Mg ²⁺ â€Based Dualâ€Ion Battery with High Power Density. Advanced Functional Materials, 2021, 31, 2107523. | 7.8 | 30 | | 190 | Ultrafast Intramolecular Charge Transfer of Formyl Perylene Observed Using Femtosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 11576-11582. | 1.1 | 29 | | 191 | Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin–CdTe quantum dot nano-assemblies. Chemical Communications, 2015, 51, 8010-8013. | 2.2 | 28 | | 192 | Tuning Soluteâ€Redistribution Dynamics
for Scalable Fabrication of Colloidal Quantumâ€Dot
Optoelectronics. Advanced Materials, 2019, 31, e1805886. | 11.1 | 28 | | 193 | Intersystem crossing <i>via</i> charge recombination in a perylene–naphthalimide compact electron donor/acceptor dyad. Journal of Materials Chemistry C, 2020, 8, 8305-8319. | 2.7 | 28 | | 194 | Unprecedented Surface Plasmon Modes in Monoclinic MoO ₂ Nanostructures. Advanced Materials, 2020, 32, e1908392. | 11.1 | 28 | | 195 | Scaled Deposition of Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene on Complex Surfaces: Application Assessment as Rear Electrodes for Silicon Heterojunction Solar Cells. ACS Nano, 2022, 16, 2419-2428. | 7.3 | 28 | | 196 | Excited state dynamics of a PYP chromophore model system explored with ultrafast infrared spectroscopy. Chemical Physics Letters, 2005, 401, 157-163. | 1.2 | 27 | | 197 | Water-wire catalysis in photoinduced acid–base reactions. Physical Chemistry Chemical Physics, 2012, 14, 8974. | 1.3 | 27 | | 198 | Nanoscale Crossâ€Point Resistive Switching Memory Comprising pâ€Type SnO Bilayers. Advanced Electronic Materials, 2015, 1, 1400035. | 2.6 | 27 | | # | Article | IF | Citations | |-----|--|------|-----------| | 199 | Realâ€Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy. Advanced Materials, 2016, 28, 5106-5111. | 11.1 | 27 | | 200 | 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films. Solar Energy Materials and Solar Cells, 2016, 151, 149-153. | 3.0 | 27 | | 201 | Powering up perovskite photoresponse. Science, 2017, 355, 1260-1261. | 6.0 | 27 | | 202 | Perovskite-Based Artificial Multiple Quantum Wells. Nano Letters, 2019, 19, 3535-3542. | 4.5 | 27 | | 203 | Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex. Journal of Physical Chemistry Letters, 2014, 5, 3386-3390. | 2.1 | 26 | | 204 | Homo- or Hetero-Triplet–Triplet Annihilation? A Case Study with Perylene-BODIPY Dyads/Triads. Journal of Physical Chemistry C, 2017, 121, 16182-16192. | 1.5 | 26 | | 205 | Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Dose Photodynamic Therapy. Angewandte Chemie, 2020, 132, 16248-16255. | 1.6 | 26 | | 206 | Environmental Scanning Ultrafast Electron Microscopy: Structural Dynamics of Solvation at Interfaces. Angewandte Chemie - International Edition, 2013, 52, 2897-2901. | 7.2 | 25 | | 207 | Engineering Surface Orientations for Efficient and Stable Hybrid Perovskite Single-Crystal Solar Cells. ACS Energy Letters, 2022, 7, 1544-1552. | 8.8 | 24 | | 208 | Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903. | 1.5 | 23 | | 209 | Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au ₂₈ Nanocluster. Journal of Physical Chemistry C, 2017, 121, 10681-10685. | 1.5 | 23 | | 210 | On the relationship between rutile/anatase ratio and the nature of defect states in sub-100 nm TiO ₂ nanostructures: experimental insights. Physical Chemistry Chemical Physics, 2018, 20, 5975-5982. | 1.3 | 23 | | 211 | Shining Light on the Structure of Lead Halide Perovskite Nanocrystals. , 2021, 3, 845-861. | | 23 | | 212 | Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. Journal of the American Chemical Society, 2022, 144, 6813-6820. | 6.6 | 23 | | 213 | Ambient Layerâ€byâ€Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells.
Advanced Functional Materials, 2015, 25, 1558-1564. | 7.8 | 22 | | 214 | Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy. Nano Letters, 2016, 16, 4417-4423. | 4.5 | 22 | | 215 | Effect of Conjugation Length on Photoinduced Charge Transfer in π-Conjugated Oligomer-Acceptor
Dyads. Journal of Physical Chemistry A, 2017, 121, 4891-4901. | 1.1 | 22 | | 216 | Longâ€Lived Chargeâ€Transfer State Induced by Spinâ€Orbit Charge Transfer Intersystem Crossing (SOCTâ€ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angewandte Chemie, 2020, 132, 11688-11696. | 1.6 | 22 | | # | Article | IF | CITATIONS | |-----|---|--------------|-----------| | 217 | Luminescent Copper(I) Halides for Optoelectronic Applications. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100138. | 1.2 | 22 | | 218 | Intramolecular Energy and Electron Transfers in Bodipy Naphthalenediimide Triads. Journal of Physical Chemistry A, 2018, 122, 6081-6088. | 1.1 | 21 | | 219 | Extraordinary Carrier Diffusion on CdTe Surfaces Uncovered by 4D Electron Microscopy. CheM, 2019, 5, 706-718. | 5 . 8 | 21 | | 220 | Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity. Energy Material Advances, 2021, 2021, . | 4.7 | 21 | | 221 | Resonanceâ€Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells. Advanced Materials, 2022, 34, e2107111. | 11.1 | 21 | | 222 | Title is missing!. Transition Metal Chemistry, 2001, 26, 13-19. | 0.7 | 19 | | 223 | Remarkable Fluorescence Enhancement versus Complex Formation of Cationic Porphyrins on the Surface of ZnO Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 12154-12161. | 1.5 | 19 | | 224 | Real-time observation of ultrafast electron injection at graphene–Zn porphyrin interfaces. Physical Chemistry Chemical Physics, 2015, 17, 9015-9019. | 1.3 | 19 | | 225 | Synthesis and Characterization of Branched <i>fcc</i> / <i>hcp</i> /i> Ruthenium Nanostructures and Their Catalytic Activity in Ammonia Borane Hydrolysis. Crystal Growth and Design, 2018, 18, 1509-1516. | 1.4 | 19 | | 226 | Overcoming the Cutâ€Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface. Advanced Functional Materials, 2015, 25, 7435-7441. | 7.8 | 18 | | 227 | Tunable Photophysical Processes of Porphyrin Macrocycles on the Surface of ZnO Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 2614-2621. | 1.5 | 18 | | 228 | Engineering of CH ₃ NH ₃ PbI ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie, 2016, 128, 10844-10848. | 1.6 | 18 | | 229 | Reversible Band Gap Narrowing of Snâ€Based Hybrid Perovskite Single Crystal with Excellent Phase Stability. Angewandte Chemie, 2018, 130, 15084-15088. | 1.6 | 17 | | 230 | Heating and Cooling Dynamics of Carbon Nanotubes Observed by Temperature-Jump Spectroscopy and Electron Microscopy. Journal of the American Chemical Society, 2009, 131, 16010-16011. | 6.6 | 16 | | 231 | Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better.
Solar Energy Materials and Solar Cells, 2015, 140, 33-37. | 3.0 | 16 | | 232 | Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions. Journal of Physical Chemistry C, 2015, 119, 21896-21903. | 1.5 | 16 | | 233 | Scanning ultrafast electron microscopy: Four-dimensional imaging of materials dynamics in space and time. MRS Bulletin, 2018, 43, 491-496. | 1.7 | 16 | | 234 | Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227. | 1.6 | 16 | | # | Article | lF | Citations | |-----|---|-------------------|------------------| | 235 | [Ag ₉ (1,2-BDT) ₆] ^{3–} : How Square-Pyramidal Building Blocks Self-Assemble into the Smallest Silver Nanocluster. Inorganic Chemistry, 2021, 60, 4306-4312. | 1.9 | 16 | | 236 | Chromophore Orientation-Dependent Photophysical Properties of Pyrene–Naphthalimide Compact Electron Donor–Acceptor Dyads: Electron Transfer and Intersystem Crossing. Journal of Physical Chemistry B, 2021, 125, 9244-9259. | 1,2 | 16 | | 237 | Ultrafast excited-state dynamics of aminoperylene and of its protonated form observed by femtosecond absorption spectroscopy. Chemical Physics Letters, 2010, 487, 246-250. | 1.2 | 15 | | 238 | Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process. Journal of Physical Chemistry C, 2015, 119, 15919-15925. | 1.5 | 15 | | 239 | Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy. ACS Energy Letters, 2018, 3, 476-481. | 8.8 | 15 | | 240 | Tunable Selectivity in CO ₂ Photoâ€Thermal Reduction by Perovskiteâ€Supported Pd Nanoparticles. ChemSusChem, 2021, 14, 5525-5533. | 3.6 | 15 | | 241 | Cyanamide Passivation Enables Robust Elemental Imaging of Metal Halide Perovskites at Atomic Resolution. Journal of Physical Chemistry Letters, 2021, 12, 10402-10409. | 2.1 | 15 | | 242 | Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization. Advanced Energy Materials, 2016, 6, 1502356. | 10.2 | 14 | | 243 | Tunable Twisting Motion of Organic Linkers via Concentration and Hydrogen-Bond Formation.
Journal of Physical Chemistry C, 2019, 123, 5900-5906. | 1.5 | 14 | | 244 | Reduced ion migration and enhanced photoresponse in cuboid crystals of methylammonium lead iodide perovskite. Journal Physics D: Applied Physics, 2019, 52, 054001. | 1.3 | 14 | | 245 | Interface Matters: Enhanced
Photoluminescence and Long-Term Stability of Zero-Dimensional Cesium Lead Bromide Nanocrystals <i>via</i> Gas-Phase Aluminum Oxide Encapsulation. ACS Applied Materials & Amp; Interfaces, 2020, 12, 35598-35605. | 4.0 | 14 | | 246 | Dynamical Interconversion between Excitons and Geminate Charge Pairs in Two-Dimensional Perovskite Layers Described by the Onsager–Braun Model. Journal of Physical Chemistry Letters, 2020, 11, 1112-1119. | 2.1 | 14 | | 247 | Spin–Orbit Charge-Transfer Intersystem Crossing of Compact Naphthalenediimide-Carbazole Electron-Donor–Acceptor Triads. Journal of Physical Chemistry B, 2021, 125, 10813-10831. | 1.2 | 14 | | 248 | Photoactivated p-Doping of Organic Interlayer Enables Efficient Perovskite/Silicon Tandem Solar Cells. ACS Energy Letters, 2022, 7, 1987-1993. | 8.8 | 14 | | 249 | Ultrafast transient infrared spectroscopy for probing trapping states in hybrid perovskite films.
Communications Chemistry, 2022, 5, . | 2.0 | 14 | | 250 | Ultrafast excited-state dynamics of ferrocene-bridge-acceptor system. Chemical Physics, 2010, 372, 17-21. | 0.9 | 13 | | 251 | Halide Perovskites: Metal Halide Perovskites for Solarâ€toâ€Chemical Fuel Conversion (Adv. Energy Mater.) Tj ETo | Qq1 1 0.7
10.2 | 84314 rgBT
13 | | 252 | Cascade Electron Transfer Induces Slow Hot Carrier Relaxation in CsPbBr ₃ Asymmetric Quantum Wells. ACS Energy Letters, 2021, 6, 2602-2609. | 8.8 | 13 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 253 | The impact of electrostatic interactions on ultrafast charge transfer at Ag ₂₉ nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces. Journal of Materials Chemistry C, 2016, 4, 2894-2900. | 2.7 | 12 | | 254 | Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy. Journal of Physical Chemistry Letters, 2017, 8, 2455-2462. | 2.1 | 12 | | 255 | Shedding light on film crystallization. Nature Materials, 2017, 16, 601-602. | 13.3 | 12 | | 256 | Real-Space Mapping of Surface-Oxygen Defect States in Photovoltaic Materials Using Low-Voltage Scanning Ultrafast Electron Microscopy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7760-7767. | 4.0 | 12 | | 257 | Engineering Bandâ€Type Alignment in CsPbBr ₃ Perovskiteâ€Based Artificial Multiple Quantum
Wells. Advanced Materials, 2021, 33, e2005166. | 11.1 | 12 | | 258 | Advances and Challenges in Tin Halide Perovskite Nanocrystals. , 2021, 3, 1541-1557. | | 12 | | 259 | Solvent-dependent dual fluorescence of the push–pull system 2-diethylamino-7-nitrofluorene. Physical Chemistry Chemical Physics, 2018, 20, 5942-5951. | 1.3 | 11 | | 260 | Synthesis, Spectral and Thermal Studies on Cobalt(II), Copper(II), Nickel(II) and Zinc(II) Chelates with <i>>p</i> -tolylsalicylaldimine and Some Amino Acids. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2000, 30, 1373-1392. | 1.8 | 10 | | 261 | The Role of Site-Specific Hydrogen Bonding Interactions in the Solvation Dynamics of <i>N</i> -Acetyltryptophanamide. Journal of Physical Chemistry B, 2012, 116, 10730-10738. | 1.2 | 10 | | 262 | pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties. Inorganic Chemistry, 2016, 55, 11522-11528. | 1.9 | 10 | | 263 | Controllable Charge-Transfer Mechanism at Push–Pull Porphyrin/Nanocarbon Interfaces. Journal of Physical Chemistry C, 2019, 123, 14283-14291. | 1.5 | 10 | | 264 | Directional Exciton Migration in Benzoimidazole-Based Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 4917-4927. | 2.1 | 10 | | 265 | Light-Harvesting Two-Photon-Absorbing Polymers. Macromolecules, 2020, 53, 6279-6287. | 2,2 | 9 | | 266 | Facile and noninvasive passivation, doping and chemical tuning of macroscopic hybrid perovskite crystals. PLoS ONE, 2020, 15, e0230540. | 1.1 | 9 | | 267 | Insight into the role of reduced graphene oxide in enhancing photocatalytic hydrogen evolution in disordered carbon nitride. Physical Chemistry Chemical Physics, 2022, 24, 11213-11221. | 1.3 | 9 | | 268 | The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters. Chemical Physics Letters, 2017, 683, 393-397. | 1.2 | 8 | | 269 | Visualization of Charge Carrier Trapping in Silicon at the Atomic Surface Level Using Four-Dimensional Electron Imaging. Journal of Physical Chemistry Letters, 2019, 10, 1960-1966. | 2.1 | 8 | | 270 | Domainâ€Sizeâ€Dependent Residual Stress Governs the Phaseâ€Transition and Photoluminescence Behavior of Methylammonium Lead Iodide. Advanced Functional Materials, 2021, 31, 2008088. | 7.8 | 8 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 271 | Gentle Materials Need Gentle Fabrication: Encapsulation of Perovskites by Gas-Phase Alumina Deposition. Journal of Physical Chemistry Letters, 2021, 12, 2348-2357. | 2.1 | 8 | | 272 | To what extent can charge localization influence electron injection efficiency at graphene–porphyrin interfaces?. Physical Chemistry Chemical Physics, 2015, 17, 14513-14517. | 1.3 | 7 | | 273 | Ultrathinâ€Film Titania Photocatalyst on Nanocavity for CO 2 Reduction with Boosted Catalytic Efficiencies. Global Challenges, 2018, 2, 1800032. | 1.8 | 7 | | 274 | Pillar[5]areneâ€6tabilized Silver Nanoclusters: Extraordinary Stability and Luminescence Enhancement Induced by Host–Guest Interactions. Angewandte Chemie, 2019, 131, 15812-15817. | 1.6 | 7 | | 275 | Correlation of Photoluminescence and Structural Morphologies at the Individual Nanoparticle Level.
Journal of Physical Chemistry A, 2020, 124, 4855-4860. | 1.1 | 7 | | 276 | Phosphatidylcholine-mediated regulation of growth kinetics for colloidal synthesis of cesium tin halide nanocrystals. Nanoscale, 2021, 13, 16726-16733. | 2.8 | 7 | | 277 | Intriguing Ultrafast Charge Carrier Dynamics in Two-Dimensional Ruddlesden–Popper Hybrid
Perovskites. Journal of Physical Chemistry C, 2021, 125, 9630-9637. | 1.5 | 7 | | 278 | Light Propagation and Radiative Exciton Transport in Two-Dimensional Layered Perovskite Microwires. ACS Photonics, 2021, 8, 276-282. | 3.2 | 7 | | 279 | COORDINATION PROPERTIES OF SOME MIXED AMINO ACID METAL COMPLEXES. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2001, 31, 633-648. | 1.8 | 6 | | 280 | The Impact of Grain Alignment of the Electron Transporting Layer on the Performance of Inverted Bulk Heterojunction Solar Cells. Small, 2015, 11, 5272-5279. | 5.2 | 6 | | 281 | Access to Ultrafast Surface and Interface Carrier Dynamics Simultaneously in Space and Time. Journal of Physical Chemistry C, 2021, 125, 14495-14516. | 1.5 | 6 | | 282 | Single-Particle Spectroscopy as a Versatile Tool to Explore Lower-Dimensional Structures of Inorganic Perovskites. ACS Energy Letters, 2021, 6, 3695-3708. | 8.8 | 6 | | 283 | Experimental and Theoretical Study on the Interchange between Zr and Ti within the MILâ€125â€NH 2 Metal Cluster. Chemistry - an Asian Journal, 2021, 16, 2520-2528. | 1.7 | 5 | | 284 | Ultrafast Aggregation-Induced Tunable Emission Enhancement in a Benzothiadiazole-Based Fluorescent Metal–Organic Framework Linker. Journal of Physical Chemistry B, 2021, 125, 13298-13308. | 1.2 | 5 | | 285 | Interface Engineering of Biâ€Fluorescence Molecules for Highâ€Performance Data Encryption and Ultralow UV‣ight Detection. Advanced Optical Materials, 2022, 10, . | 3.6 | 5 | | 286 | Photoinduced Ring-Opening of a Photochromic Dihydroindolizine Derivative Monitored with Femtosecond Visible and Infrared Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 5061-5065. | 1.1 | 4 | | 287 | Synthesis and redox behavior of new ferrocene-ï€-extended-dithiafulvalenes: An approach for anticipated organic conductors. Beilstein Journal of Organic Chemistry, 2009, 5, 6. | 1.3 | 4 | | 288 | Photoinduced energy and electron transfer in rubrene–benzoquinone and rubrene–porphyrin systems. Chemical Physics Letters, 2014, 616-617, 237-242. | 1.2 | 4 | | # | Article | IF | Citations | |-----|---|------|-----------| | 289 | Imaging the Reduction of Electron Trap States in Shelled Copper Indium Gallium Selenide Nanocrystals Using Ultrafast Electron Microscopy. Journal of Physical Chemistry C, 2018, 122, 15010-15016. | 1.5 | 4 | | 290 | 2D Layered Perovskites: Surface Effect on 2D Hybrid Perovskite Crystals: Perovskites Using an Ethanolamine Organic Layer as an Example (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870351. | 11.1 | 3 | | 291 | Impact of the chemical nature and position of spacers on controlling the optical properties of silicon quantum dots. Physical Chemistry Chemical Physics, 2019, 21, 17096-17108. | 1.3 | 3 | | 292 | Relationship between the Photocatalytic Hydrogen Ion Reduction and Charge Carrier Dynamics of Pt/Cd _{1â€"<i>x</i>} Ni _{<i>x</i>} S Catalysts. Journal of Physical Chemistry C, 2019, 123, 24051-24061. | 1.5 | 3 | | 293 | Ultrafast electron imaging of surface charge carrier dynamics at low voltage. Structural Dynamics, 2020, 7, 021001. | 0.9 | 3 | | 294 | Photothermal Catalysis: Efficient Visibleâ€Light Driven Photothermal Conversion of CO ₂ to Methane by Nickel Nanoparticles Supported on Barium Titanate (Adv. Funct. Mater. 8/2021). Advanced
Functional Materials, 2021, 31, 2170053. | 7.8 | 3 | | 295 | Ultrafast Polarization-Sensitive Infrared Spectroscopy of Photoactive Yellow Protein and Model Compounds. Springer Series in Chemical Physics, 2007, , 453-455. | 0.2 | 3 | | 296 | Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions. Dyes and Pigments, 2017, 136, 881-886. | 2.0 | 2 | | 297 | Effect of Zincâ€Doping on the Reduction of the Hotâ€Carrier Cooling Rate in Halide Perovskites.
Angewandte Chemie, 2021, 133, 11052-11058. | 1.6 | 2 | | 298 | Ultrafast Aqueous Bimolecular Acid-Base Proton Transfer: from Direct Exchange to Sequential Hopping. Springer Series in Chemical Physics, 2007, , 412-414. | 0.2 | 2 | | 299 | Aqueous Proton Transfer Pathways in Bimolecular Acid-Base Neutralization. Springer Series in Chemical Physics, 2009, , 622-624. | 0.2 | 2 | | 300 | Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells (Adv. Energy Mater. 40/2021). Advanced Energy Materials, 2021, 11, 2170160. | 10.2 | 2 | | 301 | Soft perovskites stabilized by robust heterojunctions. Joule, 2022, 6, 951-952. | 11.7 | 2 | | 302 | Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016). Small, 2016, 12, 2312-2312. | 5.2 | 1 | | 303 | Innentitelbild: Templated Atomâ€Precise Galvanic Synthesis and Structure Elucidation of a [Ag ₂₄ Au(SR) ₁₈] ^{â^'} Nanocluster (Angew. Chem. 3/2016). Angewandte Chemie, 2016, 128, 834-834. | 1.6 | 1 | | 304 | Hybrid Materials: 2D Organic–Inorganic Hybrid Thin Films for Flexible UV–Visible Photodetectors (Adv. Funct. Mater. 15/2017). Advanced Functional Materials, 2017, 27, . | 7.8 | 1 | | 305 | Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems. Journal of Physical Chemistry C, 2017, 121, 7837-7843. | 1.5 | 1 | | 306 | High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite Nanocrystals on Silicon Platform. , 2019, , . | | 1 | | # | Article | IF | Citations | |-----|---|------|-----------| | 307 | Energy Spotlight. ACS Energy Letters, 2021, 6, 2003-2005. | 8.8 | 1 | | 308 | Quantum Dots: Overcoming the Cutâ€Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface (Adv. Funct. Mater. 48/2015). Advanced Functional Materials, 2015, 25, 7548-7548. | 7.8 | 0 | | 309 | Heterojunction Solar Cells: Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction
Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and
Optimization (Adv. Energy Mater. 11/2016). Advanced Energy Materials, 2016, 6, . | 10.2 | 0 | | 310 | Visualization of carrier dynamics on photoactive material surfaces. SPIE Newsroom, 0, , . | 0.1 | 0 | | 311 | Mapping Charge Carrier Dynamics of Photoactive Material Surfaces in Space and Time. ECS Meeting Abstracts, 2018, , . | 0.0 | 0 | | 312 | Boosted CO2 reduction using ultra-thin TiO2 photocatalyst films on nanocavities. , 2019, , . | | 0 | | 313 | (Invited) Perovskite Single Crystals with Free-Hole Trapping Centers for Photodetector and Solar Cell Applications. ECS Meeting Abstracts, 2019, , . | 0.0 | 0 | | 314 | Perovskite Nanostructures for X-Ray Imaging Scintillators. , 0, , . | | 0 | | 315 | Recent Advances in Chemistry/Materials (Saudi Arabia). Chemical Record, 0, , . | 2.9 | 0 |