Matt Chojnacki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 2015, 8, 829-832.	12.9	513
2	Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 2014, 7, 53-58.	12.9	248
3	Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	148
4	Orbital evidence for more widespread carbonateâ€bearing rocks on Mars. Journal of Geophysical Research E: Planets, 2016, 121, 652-677.	3.6	109
5	Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 2011, 116, .	3.3	106
6	Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates. Journal of Geophysical Research, 2010, 115, .	3.3	98
7	Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nature Geoscience, 2017, 10, 903-907.	12.9	96
8	Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	90
9	Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 1204-1231.	3.6	56
10	Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus, 2015, 251, 275-290.	2.5	49
11	Changes in blast zone albedo patterns around new martian impact craters. Icarus, 2016, 267, 86-105.	2.5	49
12	Geological context of waterâ€altered minerals in Valles Marineris, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	48
13	Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties. Icarus, 2014, 230, 96-142.	2.5	45
14	Boundary condition controls on the high-sand-flux regions of Mars. Geology, 2019, 47, 427-430.	4.4	43
15	Windâ€Driven Erosion and Exposure Potential at Mars 2020 Rover Candidateâ€Landing Sites. Journal of Geophysical Research E: Planets, 2018, 123, 468-488.	3.6	41
16	Megaripple Migration on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006446.	3.6	41
17	Modern Mars' geomorphological activity, driven by wind, frost, and gravity. Geomorphology, 2021, 380, 107627.	2.6	40
18	Valles Marineris dune sediment provenance and pathways. Icarus, 2014, 232, 187-219.	2.5	38

ΜΑΤΤ CHOJNACKI

#	Article	IF	CITATIONS
19	Patterns in Mobility and Modification of Middle―and High‣atitude Southern Hemisphere Dunes on Mars. Journal of Geophysical Research E: Planets, 2018, 123, 3205-3219.	3.6	35
20	Climbing and falling dunes in Valles Marineris, Mars. Geophysical Research Letters, 2010, 37, .	4.0	34
21	Late Amazonian aeolian features, gradation, wind regimes, and Sediment State in the Vicinity of the Mars Exploration Rover Opportunity, Meridiani Planum, Mars. Aeolian Research, 2015, 16, 75-99.	2.7	33
22	Evidence for episodic alluvial fan formation in far western Terra Tyrrhena, Mars. Icarus, 2011, 211, 222-237.	2.5	31
23	Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars. Aeolian Research, 2017, 26, 73-88.	2.7	26
24	Overcoming the Challenges Associated with Imageâ€Based Mapping of Small Bodies in Preparation for the OSIRISâ€REx Mission to (101955) Bennu. Earth and Space Science, 2018, 5, 929-949.	2.6	26
25	Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	24
26	Mars: Abundant Recurring Slope Lineae (RSL) Following the Planetâ€Encircling Dust Event (PEDE) of 2018. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006575.	3.6	21
27	Inverse maximum gross bedform-normal transport 2: Application to a dune field in Ganges Chasma, Mars and comparison with HiRISE repeat imagery and MRAMS. Icarus, 2014, 230, 47-63.	2.5	18
28	Dune-slope activity due to frost and wind throughout the north polar erg, Mars. Geological Society Special Publication, 2019, 467, 95-114.	1.3	18
29	Active Mars: A Dynamic World. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006876.	3.6	17
30	Dune‥ardang Interactions in Becquerel Crater, Mars. Journal of Geophysical Research E: Planets, 2018, 123, 353-368.	3.6	16
31	Ancient Martian Aeolian Sand Dune Deposits Recorded in the Stratigraphy of Valles Marineris and Implications for Past Climates. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006510.	3.6	16
32	Seasonal Slumps in Juventae Chasma, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2193-2214.	3.6	14
33	Widespread Megaripple Activity Across the North Polar Ergs of Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006970.	3.6	13
34	The central uplift of Ritchey crater, Mars. Icarus, 2015, 252, 255-270.	2.5	11
35	Revealing Active Mars with HiRISE Digital Terrain Models. Remote Sensing, 2022, 14, 2403.	4.0	11
36	Surficial properties of landslides and surrounding units in Ophir Chasma, Mars. Journal of Geophysical Research, 2006, 111, .	3.3	9

ΜΑΤΤ CHOJNACKI

#	Article	IF	CITATIONS
37	Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars. Planetary and Space Science, 2016, 121, 36-52.	1.7	7
38	Scarp orientation in regions of active aeolian erosion on Mars. Icarus, 2020, 335, 113384.	2.5	7
39	The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover. Journal of Geophysical Research E: Planets, 2017, 122, 2216-2222.	3.6	5
40	The lithified aeolian dune field adjacent to the Apollinaris Sulci, Mars: Geological history and paleo-wind record. Icarus, 2022, 373, 114788.	2.5	5
41	Summary of the Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, Arizona, USA, June 12–15, 2012. Aeolian Research, 2013, 8, 29-38.	2.7	3
42	Solar-System-Wide Significance of Mars Polar Science. , 2021, 53, .		2
43	AEOLIAN-DRIVEN LANDSCAPE EVOLUTION ON MARS. , 2016, , .		2
44	Martian Dunes: A Crucial Record of Present and Past Mars Surface Environment and Aeolian Processes. , 2022, , 617-636.		2
45	Falling Dune. , 2014, , 1-6.		1
46	Aeolian abrasion of rocks as a mechanism to produce methane in the Martian atmosphere. Scientific Reports, 2019, 9, 8229.	3.3	1
47	MORPHOLOGY OF ANCIENT BEDFORMS ON MARS FROM THE HIGH RESOLUTION IMAGING SCIENCE EXPERIMENT. , 2018, , .		1
48	Can we accurately estimate sediment budgets on Mars?. Earth and Planetary Science Letters, 2022, 593, 117682.	4.4	1
49	Erg. , 2014, , 1-5.		0
50	Climbing Dune. , 2014, , 1-5.		0
51	Sand Sheet. , 2015, , 1846-1849.		0
52	Wall Dune. , 2014, , 1-5.		0
53	Sand Sheet. , 2014, , 1-4.		0
54	Sand Ramp. , 2014, , 1-4.		0

#	Article	IF	CITATIONS
55	Echo Dune. , 2015, , 686-688.		0
56	Erg. , 2015, , 708-711.		0
57	Sand Ramp. , 2015, , 1843-1846.		0
58	Climbing Dune. , 2015, , 313-317.		0
59	Falling Dune. , 2015, , 742-746.		0
60	Wall Dune. , 2015, , 2287-2290.		0
61	An explosive volcanic origin identified for dark sand in Aeolis Dorsa, Mars. Geology, 0, , .	4.4	0