
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167557/publications.pdf Version: 2024-02-01

ΔΝΙΠΡΕΛς SIöΠΙΝ

#	Article	IF	CITATIONS
1	Alphacoronavirus in a Daubenton's Myotis Bat (Myotis daubentonii) in Sweden. Viruses, 2022, 14, 556.	3.3	5
2	Co-Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated Hyalomma rufipes. Microorganisms, 2022, 10, 1393.	3.6	5
3	Community-led, integrated, reproducible multi-omics with anvi'o. Nature Microbiology, 2021, 6, 3-6.	13.3	370
4	Complete Genome Sequence of <i>Francisella</i> sp. Strain LA11-2445 (FDC406), a Novel <i>Francisella</i> Species Isolated from a Human Skin Lesion. Microbiology Resource Announcements, 2021, 10, .	0.6	0
5	Reorganized Genomic Taxonomy of Francisellaceae Enables Design of Robust Environmental PCR Assays for Detection of Francisella tularensis. Microorganisms, 2021, 9, 146.	3.6	19
6	Biological amplification of low frequency mutations unravels laboratory culture history of the bio-threat agent Francisella tularensis. Forensic Science International: Genetics, 2020, 45, 102230.	3.1	6
7	Complete Genome Sequence of Francisella halioticida Type Strain DSM 23729 (FSC1005). Microbiology Resource Announcements, 2020, 9, .	0.6	2
8	A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences. PLoS ONE, 2020, 15, e0237721.	2.5	1
9	Complete Genome Sequence of Francisella tularensis subsp. holarctica Strain A271_1 (FDC408), Isolated from a Eurasian Beaver (Castor fiber). Microbiology Resource Announcements, 2020, 9, .	0.6	2
10	Reclassification of Francisella noatunensis subsp. orientalis Ottem et al. 2009 as Francisella orientalis sp. nov., Francisella noatunensis subsp. chilensis subsp. nov. and emended description of Francisella noatunensis. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2034-2048.	1.7	38
11	Complete Genome Sequences of Allofrancisella inopinata SYSU YG23 and Allofrancisella frigidaquae SYSU 10HL1970, Isolated from Water from Cooling Systems in China. Microbiology Resource Announcements, 2020, 9, .	0.6	2
12	doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows. BMC Bioinformatics, 2019, 20, 498.	2.6	2
13	A geographically matched control population efficiently limits the number of candidate disease-causing variants in an unbiased whole-genome analysis. PLoS ONE, 2019, 14, e0213350.	2.5	8
14	A New Species of the γ-Proteobacterium Francisella, F. adeliensis Sp. Nov., Endocytobiont in an Antarctic Marine Ciliate and Potential Evolutionary Forerunner of Pathogenic Species. Microbial Ecology, 2019, 77, 587-596.	2.8	22
15	Accounting for Bacterial Overlap Between Raw Water Communities and Contaminating Sources Improves the Accuracy of Signature-Based Microbial Source Tracking. Frontiers in Microbiology, 2018, 9, 2364.	3.5	16
16	Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods, 2018, 15, 475-476.	19.0	714
17	Predators and nutrient availability favor protozoa-resisting bacteria in aquatic systems. Scientific Reports, 2018, 8, 8415.	3.3	20
18	Galleria mellonella Reveals Niche Differences Between Highly Pathogenic and Closely Related Strains of Francisella spp Frontiers in Cellular and Infection Microbiology, 2018, 8, 188.	3.9	14

#	Article	IF	CITATIONS
19	Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biology and Biochemistry, 2018, 125, 197-209.	8.8	64
20	Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells. MBio, 2018, 9, .	4.1	174
21	Hematopoietic Age at Onset of Triple-Negative Breast Cancer Dictates Disease Aggressiveness and Progression. Cancer Research, 2016, 76, 2932-2943.	0.9	17
22	Scaffolding of a bacterial genome using MinION nanopore sequencing. Scientific Reports, 2015, 5, 11996.	3.3	70
23	Complete Genome Sequence of Francisella guangzhouensis Strain 08HL01032 ^T , Isolated from Air-Conditioning Systems in China. Genome Announcements, 2015, 3, .	0.8	6
24	The Plant Genome Integrative Explorer Resource: PlantGen <scp>IE</scp> .org. New Phytologist, 2015, 208, 1149-1156.	7.3	282
25	Phylogeographical pattern of Francisella tularensis in a nationwide outbreak of tularaemia in Norway, 2011. Eurosurveillance, 2015, 20, .	7.0	22
26	Genomic analyses of Francisella tularensis strains confirm disease transmission from drinking water sources, Turkey, 2008, 2009 and 2012. Eurosurveillance, 2015, 20, .	7.0	26
27	Eight New Genomes and Synthetic Controls Increase the Accessibility of Rapid Melt-MAMA SNP Typing of Coxiella burnetii. PLoS ONE, 2014, 9, e85417.	2.5	17
28	Complete Genome Sequence of <i>Francisella endociliophora</i> Strain FSC1006, Isolated from a Laboratory Culture of the Marine Ciliate <i>Euplotes raikovi</i> . Genome Announcements, 2014, 2, .	0.8	23
29	<i>Francisella tularensis</i> subsp. <i>tularensis</i> Group A.I, United States. Emerging Infectious Diseases, 2014, 20, 861-5.	4.3	18
30	CanSNPer: a hierarchical genotype classifier of clonal pathogens. Bioinformatics, 2014, 30, 1762-1764.	4.1	63
31	Genome sequence of Coxiella burnetii strain Namibia. Standards in Genomic Sciences, 2014, 9, 22.	1.5	12
32	An improved multiple-locus variable-number of tandem repeat analysis (MLVA) for the fish pathogen Francisella noatunensis using capillary electrophoresis. BMC Veterinary Research, 2013, 9, 252.	1.9	5
33	The phylogeographic pattern of <i><scp>F</scp>rancisella tularensis</i> in <scp>S</scp> weden indicates a <scp>S</scp> candinavian origin of <scp>E</scp> urosiberian tularaemia. Environmental Microbiology, 2013, 15, 634-645.	3.8	68
34	The Need for High-Quality Whole-Genome Sequence Databases in Microbial Forensics. Biosecurity and Bioterrorism, 2013, 11, S78-S86.	1.2	17
35	<i>Trans</i> -Golgi Network Localized ECHIDNA/Ypt Interacting Protein Complex Is Required for the Secretion of Cell Wall Polysaccharides in <i>Arabidopsis</i> Å Å Å. Plant Cell, 2013, 25, 2633-2646.	6.6	111
36	Indigenous Infection withFrancisella tularensis holarcticain The Netherlands. Case Reports in Infectious Diseases, 2013, 2013, 1-3.	0.5	12

#	Article	IF	CITATIONS
37	Draft genome sequence of Francisella tularensis subsp. holarctica BD11-00177. Standards in Genomic Sciences, 2013, 8, 539-547.	1.5	5
38	The SEQanswers wiki: a wiki database of tools for high-throughput sequencing analysis. Nucleic Acids Research, 2012, 40, D1313-D1317.	14.5	35
39	Genome Sequence of Francisella tularensis subspecies holarctica Strain FSC200, Isolated from a Child with Tularemia. Journal of Bacteriology, 2012, 194, 6965-6966.	2.2	34
40	Real-time PCR assays targeting unique DNA sequences of fish-pathogenic Francisella noatunensis subspecies noatunensis and orientalis. Diseases of Aquatic Organisms, 2012, 101, 225-234.	1.0	20
41	Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics, 2012, 13, 268.	2.8	121
42	Increased knowledge of Francisella genus diversity highlights the benefits of optimised DNA-based assays. BMC Microbiology, 2012, 12, 220.	3.3	16
43	The Distribution of Francisella-like Bacteria Associated with Coastal Waters in Norway. Microbial Ecology, 2012, 64, 370-377.	2.8	26
44	Analysis of global changes in gene expression during activity-dormancy cycle in hybrid aspen apex. Plant Biotechnology, 2010, 27, 1-16.	1.0	79
45	Whole-Genome Sequencing Reveals Distinct Mutational Patterns in Closely Related Laboratory and Naturally Propagated Francisella tularensis Strains. PLoS ONE, 2010, 5, e11556.	2.5	24
46	Components Acting Downstream of Short Day Perception Regulate Differential Cessation of Cambial Activity and Associated Responses in Early and Late Clones of Hybrid Poplar. Plant Physiology, 2010, 154, 1294-1303.	4.8	31
47	The Control of Autumn Senescence in European Aspen Â. Plant Physiology, 2009, 149, 1982-1991.	4.8	239
48	Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus. Tree Genetics and Genomes, 2009, 5, 459-474.	1.6	30
49	A unique program for cell death in xylem fibers of <i>Populus</i> stem. Plant Journal, 2009, 58, 260-274.	5.7	147
50	The <i>Populus</i> Genome Integrative Explorer (PopGenIE): a new resource for exploring the <i>Populus</i> genome. New Phytologist, 2009, 182, 1013-1025.	7.3	208
51	A cross-species transcriptomics approach to identify genes involved in leaf development. BMC Genomics, 2008, 9, 589.	2.8	37
52	Global expression profiling in leaves of free-growing aspen. BMC Plant Biology, 2008, 8, 61.	3.6	29
53	Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant Journal, 2007, 50, 557-573.	5.7	161

 $_{54}$ Growth-phase-dependent gene expression profiling of poplar (Populus alba \tilde{A} – Populus tremula var.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{22}^{+1}$

#	Article	IF	CITATIONS
55	Orthogonal projections to latent structures as a strategy for microarray data normalization. BMC Bioinformatics, 2007, 8, 207.	2.6	67
56	The genetics and genomics of the drought response inPopulus. Plant Journal, 2006, 48, 321-341.	5.7	216
57	UPSC-BASE -Populustranscriptomics online. Plant Journal, 2006, 48, 806-817.	5.7	53
58	Protease gene families in Populus and Arabidopsis. BMC Plant Biology, 2006, 6, 30.	3.6	129
59	MASQOT-GUI: spot quality assessment for the two-channel microarray platform. Bioinformatics, 2006, 22, 2554-2555.	4.1	8
60	Abundantly and Rarely Expressed Lhc Protein Genes Exhibit Distinct Regulation Patterns in Plants. Plant Physiology, 2006, 140, 793-804.	4.8	146
61	Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. Functional Plant Biology, 2006, 33, 121.	2.1	41
62	The transcriptome of Populus in elevated CO2. New Phytologist, 2005, 167, 143-154.	7.3	88
63	MASQOT: a method for cDNA microarray spot quality control. BMC Bioinformatics, 2005, 6, 250.	2.6	16
64	A transcriptional timetable of autumn senescence. Genome Biology, 2004, 5, R24.	9.6	226
65	Cadherins regulate aggregation of pancreatic β-cells in vivo. Development (Cambridge), 1996, 122, 2895-2902.	2.5	210
66	Mouse R-Cadherin: Expression during the Organogenesis of Pancreas and Gastrointestinal Tract.	2.6	37

Experimental Cell Research, 1995, 221, 413-425.