
Craig T Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against human prostate cancer. Oncolmmunology, 2021, 10, 1989789.	4.6	15
2	Comparison of a Novel Bisphosphonate Prodrug and Zoledronic Acid in the Induction of Cytotoxicity in Human Vl³2Vl´2 T Cells. Frontiers in Immunology, 2020, 11, 1405.	4.8	16
3	Critical Roles for Coiled-Coil Dimers of Butyrophilin 3A1 in the Sensing of Prenyl Pyrophosphates by Human Vγ2Vδ2 T Cells. Journal of Immunology, 2019, 203, 607-626.	0.8	16
4	Determination of human γδT cell–mediated cytotoxicity using a non-radioactive assay system. Journal of Immunological Methods, 2019, 466, 32-40.	1.4	4
5	Synthesis and Immunomodulatory Activity of Fluorineâ€Containing Bisphosphonates. ChemMedChem, 2019, 14, 462-468.	3.2	7
6	Expansion of human γδT cells for adoptive immunotherapy using a bisphosphonate prodrug. Cancer Science, 2018, 109, 587-599.	3.9	40
7	Abstract 3628: PD-1 checkpoint blockade therapy enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against prostate tumors in a preclinical model. , 2018, , .		0
8	Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation. , 2017, 5, 9.		49
9	Anti-Tumor Activity and Immunotherapeutic Potential of a Bisphosphonate Prodrug. Scientific Reports, 2017, 7, 5987.	3.3	49
10	Live Cell Labeling with Terpyridine Derivative Proligands to Measure Cytotoxicity Mediated by Immune Cells. ChemMedChem, 2017, 12, 2006-2013.	3.2	9
11	Necroptosis of Dendritic Cells Promotes Activation of Î ³ δT Cells. Journal of Innate Immunity, 2016, 8, 479-492.	3.8	3
12	Targeting Cancer Cells with a Bisphosphonate Prodrug. ChemMedChem, 2016, 11, 2656-2663.	3.2	35
13	Anti-PD-1 and Anti-PD-L1 mAbs. , 2016, , 283-294.		1
14	Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells. Journal of Immunology, 2015, 195, 4583-4594.	0.8	74
15	Metabolic Engineering of <i>Salmonella</i> Vaccine Bacteria To Boost Human Vγ2Vδ2 T Cell Immunity. Journal of Immunology, 2014, 193, 708-721.	0.8	22
16	Zoledronic acid-induced expansion of γδT cells from early-stage breast cancer patients: effect of IL-18 on helper NK cells. Cancer Immunology, Immunotherapy, 2013, 62, 677-687.	4.2	55
17	Chemo-Immunotherapeutic Antimalarials Targeting Isoprenoid Biosynthesis. ACS Medicinal Chemistry Letters, 2013, 4, 423-427.	2.8	35
18	Butyrophilin 3A1 Plays an Essential Role in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells. Journal of Immunology, 2013, 191, 1029-1042.	0.8	142

CRAIG T MORITA

#	Article	IF	CITATIONS
19	Comparison of Î ³ δT cell responses and farnesyl diphosphate synthase inhibition in tumor cells pretreated with zoledronic acid. Cancer Science, 2013, 104, 536-542.	3.9	50
20	Synthesis and immunological evaluation of the 4-β-glucoside of HMBPP. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 811-813.	2.2	1
21	Regulation and function of IL-17A- and IL-22-producing $\hat{I}^{3}\hat{I}$ T cells. Cellular and Molecular Life Sciences, 2011, 68, 2371-2390.	5.4	58
22	Indirect Stimulation of Human Vγ2VÎ ̈Z T Cells through Alterations in Isoprenoid Metabolism. Journal of Immunology, 2011, 187, 5099-5113.	0.8	79
23	Lipophilic Pyridinium Bisphosphonates: Potent γ <i>δ</i> T Cell Stimulators. Angewandte Chemie - International Edition, 2010, 49, 1136-1138.	13.8	63
24	Vγ2VÎ′2 T Cell Receptor Recognition of Prenyl Pyrophosphates Is Dependent on All CDRs. Journal of Immunology, 2010, 184, 6209-6222.	0.8	107
25	Identification of an Important Immunological Difference between Virulent Varicella-Zoster Virus and Its Avirulent Vaccine: Viral Disruption of Dendritic Cell Instruction. Journal of Immunology, 2010, 185, 488-497.	0.8	18
26	Cytokine Requirements for the Differentiation and Expansion of IL-17A– and IL-22–Producing Human Vγ2VÎ′2 T Cells. Journal of Immunology, 2010, 184, 7268-7280.	0.8	169
27	Phenotypic and functional alterations of Vγ2VÎ′2 T cell subsets in patients with active nasopharyngeal carcinoma. Cancer Immunology, Immunotherapy, 2009, 58, 1095-1107.	4.2	16
28	Phosphonosulfonates Are Potent, Selective Inhibitors of Dehydrosqualene Synthase and Staphyloxanthin Biosynthesis in Staphylococcus aureus. Journal of Medicinal Chemistry, 2009, 52, 976-988.	6.4	59
29	Photoaffinity Antigens for Human $\hat{I}^{3}\hat{I}$ T Cells. Journal of Immunology, 2008, 181, 7738-7750.	0.8	49
30	Preferential recognition of a microbial metabolite by human VÂ2VÂ2 T cells. International Immunology, 2007, 19, 657-673.	4.0	91
31	Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2VΠ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunological Reviews, 2007, 215, 59-76.	6.0	386
32	Synthesis of Pyrophosphate-Containing Compounds that Stimulate VγVδ2 T Cells: Application to Cancer Immunotherapy. Medicinal Chemistry, 2007, 3, 85-99.	1.5	28
33	Isoprenoid Biosynthesis as a Drug Target:Â Bisphosphonate Inhibition ofEscherichia coliK12 Growth and Synergistic Effects of Fosmidomycin. Journal of Medicinal Chemistry, 2006, 49, 7331-7341.	6.4	52
34	Structural Studies of Vγ2Vδ2 T Cell Phosphoantigens. Chemistry and Biology, 2006, 13, 985-992.	6.0	23
35	Chemokine biology of NK cells and $\hat{I}^{\hat{J}}$ T cells. , 2006, , 59-78.		2
36	Pyridinium-1-yl Bisphosphonates Are Potent Inhibitors of Farnesyl Diphosphate Synthase and Bone Resorption. Journal of Medicinal Chemistry, 2005, 48, 2957-2963.	6.4	77

CRAIG T MORITA

#	Article	IF	CITATIONS
37	Calmodulin kinase II regulates the maturation and antigen presentation of human dendritic cells. Journal of Leukocyte Biology, 2005, 78, 1397-1407.	3.3	43
38	A Crystallographic Investigation of Phosphoantigen Binding to Isopentenyl Pyrophosphate/Dimethylallyl Pyrophosphate Isomerase. Journal of the American Chemical Society, 2005, 127, 536-537.	13.7	12
39	fldAis an essential gene required in the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. FEBS Letters, 2005, 579, 3802-3806.	2.8	79
40	Synthesis of chiral phosphoantigens and their activity in γδT cell stimulation. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4471-4477.	2.2	20
41	Quantitative Structureâ^'Activity Relationships for Î ³ δT Cell Activation by Bisphosphonates. Journal of Medicinal Chemistry, 2004, 47, 375-384.	6.4	114
42	Identification of guinea pig γδT cells and characterization during pulmonary tuberculosis. Veterinary Immunology and Immunopathology, 2004, 102, 33-44.	1.2	7
43	Conservation of Nonpeptide Antigen Recognition by Rhesus Monkey Vγ2Vδ2 T Cells. Journal of Immunology, 2003, 170, 3696-3706.	0.8	52
44	Flexible migration program regulates γδT-cell involvement in humoral immunity. Blood, 2003, 102, 3693-3701.	1.4	158
45	CD1-mediated γ/δT Cell Maturation of Dendritic Cells. Journal of Experimental Medicine, 2002, 196, 1575-1584.	8.5	194
46	Adaptive Immune Response of Vgamma 2Vdelta 2+ T Cells During Mycobacterial Infections. Science, 2002, 295, 2255-2258.	12.6	355
47	Superantigen Recognition by γδT Cells. Immunity, 2001, 14, 331-344.	14.3	50
48	MICA Engagement by Human Vγ2VÎ′2 T Cells Enhances Their Antigen-Dependent Effector Function. Immunity, 2001, 15, 83-93.	14.3	398
49	Structural Features of Nonpeptide Prenyl Pyrophosphates That Determine Their Antigenicity for Human Î ³ δT Cells. Journal of Immunology, 2001, 167, 36-41.	0.8	74
50	T cell receptor-dependent activation of human lymphocytes through cell surface ganglioside GT1b: implications for innate immunity. European Journal of Immunology, 2000, 30, 3199-3206.	2.9	6
51	Antigen recognition by human γδT cells: pattern recognition by the adaptive immune system. Seminars in Immunopathology, 2000, 22, 191-217.	4.0	153
52	Self-Recognition of Cd1 by \hat{I}^{3}/\hat{I}^{2} T Cells. Journal of Experimental Medicine, 2000, 191, 937-948.	8.5	345
53	Recognition of nonpeptide prenyl pyrophosphate antigens by human $\hat{I}^3\hat{I}$ T cells. Microbes and Infection, 1999, 1, 175-186.	1.9	62
54	Human Î ³ δT Cells Recognize Alkylamines Derived from Microbes, Edible Plants, and Tea. Immunity, 1999, 11, 57-65.	14.3	347

CRAIG T MORITA

#	Article	IF	CITATIONS
55	The Syk family of protein tyrosine kinases in T-cell activation and development. Immunological Reviews, 1998, 165, 167-180.	6.0	242
56	Transendothelial chemotaxis of human αβ and γδT lymphocytes to chemokines. European Journal of Immunology, 1998, 28, 104-113.	2.9	69
57	Direct presentation of non-peptide prenyl pyrophosphate antigens to human γδT cells. Research in Immunology, 1996, 147, 347-353.	0.9	48
58	Recognition of nonpeptide antigens by T cells. Journal of Molecular Medicine, 1996, 74, 223-231.	3.9	31
59	T-cell recognition of non-peptide antigens. Current Opinion in Immunology, 1996, 8, 510-516.	5.5	89
60	Interactions of human alpha/beta and gamma/delta T lymphocyte subsets in shear flow with E-selectin and P-selectin Journal of Experimental Medicine, 1996, 183, 1193-1203.	8.5	66
61	Natural and synthetic non-peptide antigens recognized by human γδT cells. Nature, 1995, 375, 155-158.	27.8	959
62	Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδT cells. Immunity, 1995, 3, 495-507.	14.3	453
63	Recognition of a lipid antigen by CD1-restricted $\hat{I}\pm\hat{I}^2$ + T cells. Nature, 1994, 372, 691-694.	27.8	962
64	Nonpeptide ligands for human gamma delta T cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8175-8179.	7.1	369
65	CDlb restricts the response of human CD4â^'8â^'T lymphocytes to a microbial antigen. Nature, 1992, 360, 593-597.	27.8	574
66	Functionally distinct subsets of human $\hat{I}^3/\hat{I}^{\prime}$ T cells. European Journal of Immunology, 1991, 21, 2999-3007.	2.9	106
67	Evidence for clonal selection of gamma/delta T cells in response to a human pathogen Journal of Experimental Medicine, 1991, 174, 683-692.	8.5	92
68	Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire Journal of Experimental Medicine, 1990, 171, 1597-1612.	8.5	500
69	Recognition of mycobacterial antigens by $\hat{I}^{3}\hat{I}'$ T cells. Research in Immunology, 1990, 141, 645-651.	0.9	11
70	ANTIRETINOBLASTOMA MONOCLONAL ANTIBODIES. Retina, 1983, 3, 200-205.	1.7	5