
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675309/publications.pdf Version: 2024-02-01

Υληςιμή Χιλ

#	Article	IF	CITATIONS
1	Two Compatible Acceptors as an Alloy Model with a Halogen-Free Solvent for Efficient Ternary Polymer Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 9386-9397.	8.0	46
2	Effect of fluorine atoms on the dielectric constants, optoelectronic properties and charge carrier kinetic characteristics of indacenodithieno[3,2-b]thiophene based non-fullerene acceptors for efficient organic solar cells. Solar Energy, 2022, 236, 206-214.	6.1	6
3	A New Alcoholâ€Soluble Polymer PFNâ€ID as Cathode Interlayer to Optimize Performance of Conventional Polymer Solar Cells by Increasing Electron Mobility. Energy Technology, 2022, 10, .	3.8	30
4	p-nitrophenol-terminated alkyl side chain substituted polymer as high dielectric constant polymer additive enables efficient organic solar cells. Optical Materials, 2022, 127, 112347.	3.6	1
5	Non-Halogenated Polymer Donor-Based Organic Solar Cells with a Nearly 15% Efficiency Enabled by a Classic Ternary Strategy. ACS Applied Energy Materials, 2021, 4, 1774-1783.	5.1	47
6	Multistep Functional Embellishment for p-ZnTe as a Cathode to Boost the Faraday Efficiency of Nitrogen Conversion. ACS Applied Materials & Interfaces, 2021, 13, 8129-8137.	8.0	4
7	Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS Applied Materials & Interfaces, 2021, 13, 11117-11124.	8.0	54
8	An alcohol-soluble small molecule as efficient cathode interfacial layer materials for polymer solar cells. Optical Materials, 2021, 113, 110909.	3.6	32
9	Twisted Alkylthiothienâ€2â€yl Flanks and Extended Conjugation Length Synergistically Enhanced Photovoltaic Performance by Boosting Dielectric Constant and Carriers Kinetic Characteristics. Macromolecular Chemistry and Physics, 2021, 222, 2100030.	2.2	5
10	Enhance the efficiency of polymer solar cells through regulating phase segregation and improving charge transport via non-toxic halogen-free additive. Solar Energy, 2021, 218, 375-382.	6.1	26
11	Improved Photovoltaic Performance of Polymer Solar Cells via a Volatile and Nonhalogen Additive to Optimize Crystallinity. ACS Applied Energy Materials, 2021, 4, 7129-7137.	5.1	17
12	Ternary solar cells via ternary polymer donors and third component PC71BM to optimize morphology with 13.15% efficiency. Solar Energy, 2021, 222, 18-26.	6.1	37
13	Ultrafast Kinetics Investigation of a Fluorinated-Benzothiadiazole Polymer with an Increased Excited State Transition Dipole Moment Applied in Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9627-9638.	5.1	14
14	Enhancement Efficiency of Organic Photovoltaic Cells via Green Solvents and Nontoxic Halogenâ€Free Additives. Advanced Sustainable Systems, 2021, 5, 2100235.	5.3	10
15	Effect of fluorine atoms on optoelectronic, aggregation and dielectric constants of 2,1,3-benzothiadiazole-based alternating conjugated polymers. Dyes and Pigments, 2021, 193, 109486.	3.7	18
16	Photodynamic Investigation on the Synergistic Effects of Aromatic Side Chains with Alkylthio Substituents in Nonfullerene Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9913-9922.	5.1	1
17	Impact of fluorination on photovoltaic performance in high thermo- and photo-stability perylene diimide-based nonfullerene small molecular acceptors. Optical Materials, 2021, 121, 111593.	3.6	7
18	Construction of effective organic solar cell using phenanthroline derivatives as cathode interface layer. Optical Materials, 2021, 122, 111647.	3.6	10

#	Article	IF	CITATIONS
19	Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2― b]thiophene―alt â€naphtho[1,2―c :5,6―c â€2]bis[1,2,5]thiadiazole medium bandgap copolymers. Polymer International, 2020, 69, 192-205.	3.1	11
20	Non-toxic green food additive enables efficient polymer solar cells through adjusting the phase composition distribution and boosting charge transport. Journal of Materials Chemistry C, 2020, 8, 2483-2490.	5.5	51
21	Efficient inverted organic solar cells with a thin natural biomaterial l-Arginine as electron transport layer. Solar Energy, 2020, 196, 168-176.	6.1	51
22	Simultaneously enhancing the dielectric constant, photo-response and deepening HOMO levels of benzo[1,2-b;4,5-b']dithiophene derivatives-based conjugated polymers. Dyes and Pigments, 2020, 177, 108263.	3.7	5
23	Enhanced organic photovoltaic performance through promoting crystallinity of photoactive layer and conductivity of hole-transporting layer by V2O5 doped PEDOT:PSS hole-transporting layers. Solar Energy, 2020, 211, 1102-1109.	6.1	40
24	Insights into Excitonic Dynamics of Terpolymer-Based High-Efficiency Nonfullerene Polymer Solar Cells: Enhancing the Yield of Charge Separation States. ACS Applied Materials & Interfaces, 2020, 12, 8475-8484.	8.0	62
25	Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. Journal of Materials Chemistry C, 2019, 7, 11152-11159.	5.5	87
26	An Alcohol-Soluble Polymer Electron Transport Layer Based on Perylene Diimide Derivatives for Polymer Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1678-1685.	2.5	34
27	Synthesis and Photovoltaic Effect of Electron-Withdrawing Units for Low Band Gap Conjugated Polymers Bearing Bi(thienylenevinylene) Side Chains. Polymers, 2019, 11, 1461.	4.5	3
28	Systematically investigating the influence of inserting alkylthiophene spacers on the aggregation, photo-stability and optoelectronic properties of copolymers from dithieno[2,3- <i>d</i> :2′,3′- <i>d</i> ꀲ]benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and benzothiadiaz derivatives. Polymer Chemistry, 2019, 10, 972-982.	ole.9	10
29	Enhanced Organic Photovoltaic Performance through Modulating Vertical Composition Distribution and Promoting Crystallinity of the Photoactive Layer by Diphenyl Sulfide Additives. ACS Applied Materials & amp; Interfaces, 2019, 11, 7022-7029.	8.0	79
30	The comprehensive utilization of the synergistic effect of fullerene and non-fullerene acceptors to achieve highly efficient polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 15841-15850.	10.3	118
31	Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-bâ€2]dithiophene-based photovoltaic polymers. Journal of Materials Research, 2019, 34, 2057-2066.	2.6	2
32	Effect of Flank Rotation on the Photovoltaic Properties of Dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-Based Narrow Band Gap Copolymers. Polymers 11, 239.	s, 20 19,	6
33	Synthesis and photovoltaic investigation of dithieno[2,3â€ <i>d</i> 2â€2,3â€2â€ <i>d</i> â€2]â€benzo[1,2â€ <i>b</i> :3,4â€ <i>b</i> â€2:5,6â€ <i>d</i> â€3]trit polymer with an enlarged ï€â€conjugated system. Polymers for Advanced Technologies, 2019, 30, 1290-1302.	thiophene	â€based co
34	Enhanced Photovoltaic Performance in D-Ï€-A Copolymers Containing Triisopropylsilylethynyl-Substituted Dithienobenzodithiophene by Modulating the Electron-Deficient Units. Polymers, 2019, 11, 12.	4.5	28
35	Solution-processible Cd-doped ZnO nanoparticles as an electron transport layer to achieve high performance polymer solar cells through improve conductivity and light transmittance. Molecular Crystals and Liquid Crystals, 2019, 692, 74-82.	0.9	9
36	High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy, 2018, 45, 368-379.	16.0	101

#	Article	IF	CITATIONS
37	Medium band gap conjugated polymers from thienoacene derivatives and pentacyclic aromatic lactam as promising alternatives of poly(3â€hexylthiophene) in photovoltaic application. Journal of Polymer Science Part A, 2018, 56, 85-95.	2.3	30
38	Enhanced efficiency of ternary organic solar cells by doping a polymer material in P3HT:PC ₆₁ BM. Polymers for Advanced Technologies, 2018, 29, 914-920.	3.2	8
39	In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent. Nanoscale Research Letters, 2018, 13, 184.	5.7	8
40	Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 11015-11022.	5.5	87
41	An ecoâ€friendly waterâ€soluble fluoreneâ€based polyelectrolyte as interfacial layer for efficient inverted polymer solar cells. Polymers for Advanced Technologies, 2018, 29, 2237-2244.	3.2	0
42	Effects of alkyl side chain length of low bandgap naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i> à€²]bis[1,2,5]thiadiazoleâ€based copolymers on the optoelectronic propert of polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 2059-2071.	ies3	20
43	36% Enhanced Efficiency of Ternary Organic Solar Cells by Doping a NT-Based Polymer as an Electron-Cascade Donor. Polymers, 2018, 10, 703.	4.5	9
44	Boosting Up Performance of Inverted Photovoltaic Cells from Bis(alkylthien-2-yl)dithieno[2,3- <i>d</i> 2′,3′- <i>d</i> ′]benzo[1,2- <i>b</i> 4′,5′- <i>b</i> ′]di thic Copolymers by Advantageous Vertical Phase Separation. ACS Applied Materials & amp; Interfaces, 2017, 9, 10937-10945.	ophene-Ba	sed 25
45	Large branched alkylthienyl bridged naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 176-185.	2.2	22
46	Effect of alkylthiophene spacers and fluorine on the optoelectronic properties of 5,10-bis(dialkylthien-2-yl)dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-benzothiadiazole derivative copolymers. RSC Advances, 2017, 7, 22845-22854.	3.6	22
47	Naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole-based conjugated polymers consisting of oligothiophenes for efficient polymer solar cells. Polymer, 2017, 121, 183-195.	3.8	40
48	Efficiency boost significantly of ternary organic solar cells by doping low bandgap polymer. Molecular Crystals and Liquid Crystals, 2017, 650, 117-124.	0.9	1
49	Wide bandgap conjugated polymers based on bithiophene and benzotriazole for bulk heterojunction solar cells: Thiophene versus thieno[3,2- <i>b</i>]thiophene as ï€-conjugated spacers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 565-574.	2.2	5
50	Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polyelectrolyte for the cathode modification of inverted polymer solar cells. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 290-296.	2.2	5
51	A two-dimension medium band gap conjugated polymer based on 5,10-bis(alkylthien-2-yl)dithieno[3,2- <i>d</i> :3â \in^2 ,2â \in^2 - <i>d</i> àdàf \in^2]benzo[1,2- <i>b</i> :4,5-bâ \in^2]dithiophene: Sy and photovoltaic application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 538-545.	inthesis	7
52	Dithieno[2,3â€d:2′,3′â€d′]naphtho[2,1â€b:3,4â€b′]dithiophene based medium bandgap conjugated photovoltaic applications. Journal of Applied Polymer Science, 2016, 133, .	polymers 1	or
53	Synthesis of Alternating Lowâ€Bandgap Conjugated Polymers Based on Dithieno[2,3â€ <i>d</i> :2′,3′â€ <i>d</i> ?′]naphtho[1,2â€ <i>b</i> :3,4â€ <i>b</i> ′]dithiophene and Enha Photovoltaic Properties with Solvent Additives. Macromolecular Chemistry and Physics, 2015, 216, 733-741.	ancement 2.2	of
54	Synthesis of dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene -alt-isoindigo conjugated poly enhancement of photovoltaic property with diphenyl sulfide additives. Journal of Polymer Research, 2015, 22, 1.	ner and 2.4	12

#	Article	IF	CITATIONS
55	An alkylthieno-2-yl flanked dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Advances, 2015, 5, 12879-12885.	3.6	24
56	Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications. Polymer Bulletin, 2015, 72, 565-581.	3.3	11
57	Synthesis of π-Extended Dithienobenzodithiophene-Containing Medium Bandgap Copolymers and Their Photovoltaic Application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 934-941.	2.2	11
58	Synthesis and characterization of alternating and random conjugated polymers derived from dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene and 2,1,3-benzothiadiazole derivatives. Polymer Journal, 2015, 47, 803-809.	⁻ 2.7	8
59	Dithieno[2,3-d:2′,3′-d′]naphtho[1,2-b:3,4-b′]dithiophene – a novel electron-rich building block for lo band gap conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1601.	W 5.5	17
60	Synthetically controlling the optoelectronic properties of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers fo efficient solar cells. Journal of Materials Chemistry A, 2014, 2, 15316-15325.	010.3	46
61	Synthesis and characterization of alternating copolymers derived from indeno[1,2â€ <i>b</i>]fluorene for blue lightâ€emitting diodes. Journal of Applied Polymer Science, 2012, 125, 1409-1417.	2.6	3
62	Synthesis and photovoltaic properties of alternating conjugated polymers derived from indolo[3,2-b]carbazole and thiophene/thieno[3,2-b]thiophene-cored benzoselenadiazole. Polymer Science - Series A, 2011, 53, 469-479.	1.0	4
63	Alternating narrow band gap copolymers derived from indeno[1,2â€ <i>b</i>]fluorene and thiopheneâ€coredâ€thieno[3,4â€ <i>b</i>]pyrazine derivatives—Synthesis, characterization and comparative studies of photochemical stability. Journal of Polymer Science Part A, 2011, 49, 2969-2979.	2.3	6
64	Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Indeno[1,2â€ <i>b</i>]fluorene and Bithiophene or Thieno[3,2â€ <i>b</i>]thiopheneâ€Cored Benzothiadiazole. Macromolecular Chemistry and Physics, 2011, 212, 1193-1201.	2.2	12
65	Synthesis and characterization of green to orange electroluminescent copolymers derived from fluorene and 2,3-dimethylnaphthalopyrazine. Polymer Science - Series B, 2010, 52, 614-620.	0.8	0