Maria del Mar Alguacil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675011/publications.pdf

Version: 2024-02-01

109321 138484 3,796 64 35 58 citations h-index g-index papers 65 65 65 4356 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Contrasting Responses of Arbuscular Mycorrhizal Fungal Families to Simulated Climate Warming and Drying in a Semiarid Shrubland. Microbial Ecology, 2022, 84, 941-944.	2.8	8
2	Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. New Phytologist, 2021, 232, 1399-1413.	7.3	27
3	Host identity and functional traits determine the community composition of the arbuscular mycorrhizal fungi in facultative epiphytic plant species. Fungal Ecology, 2019, 39, 307-315.	1.6	20
4	The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Science of the Total Environment, 2019, 660, 913-922.	8.0	76
5	Water-spender strategy is linked to higher leaf nutrient concentrations across plant species colonizing a dry and nutrient-poor epiphytic habitat. Environmental and Experimental Botany, 2018, 153, 302-310.	4.2	29
6	Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment, 2017, 584-585, 838-848.	8.0	65
7	Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biology and Biochemistry, 2017, 109, 176-187.	8.8	50
8	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0 (0 0 rgBT /(Overlock 10 Ti
9	Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon. Science of the Total Environment, 2017, 575, 1203-1210.	8.0	12
10	Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant and Soil, 2016, 406, 15-27.	3.7	25
11	Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils. Applied and Environmental Microbiology, 2016, 82, 3348-3356.	3.1	66
12	Arbuscular mycorrhizal fungi communities in a coral cay system (Morrocoy, Venezuela) and their relationships with environmental variables. Science of the Total Environment, 2015, 505, 805-813.	8.0	22
13	Modularity Reveals the Tendency of Arbuscular Mycorrhizal Fungi To Interact Differently with Generalist and Specialist Plant Species in Gypsum Soils. Applied and Environmental Microbiology, 2014, 80, 5457-5466.	3.1	35
14	Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of Chemical Ecology, 2014, 40, 804-815.	1.8	171
15	Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biology and Biochemistry, 2014, 76, 34-44.	8.8	74
16	Prunus persica Crop Management Differentially Promotes Arbuscular Mycorrhizal Fungi Diversity in a Tropical Agro-Ecosystem. PLoS ONE, 2014, 9, e88454.	2.5	9
17	Influence of Habitat and Climate Variables on Arbuscular Mycorrhizal Fungus Community Distribution, as Revealed by a Case Study of Facultative Plant Epiphytism under Semiarid Conditions. Applied and Environmental Microbiology, 2013, 79, 7203-7209.	3.1	30
18	Host Preferences of Arbuscular Mycorrhizal Fungi Colonizing Annual Herbaceous Plant Species in Semiarid Mediterranean Prairies. Applied and Environmental Microbiology, 2012, 78, 6180-6186.	3.1	133

#	Article	IF	Citations
19	Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System. PLoS ONE, 2012, 7, e34887.	2.5	31
20	Long-Term Effects of Irrigation with Waste Water on Soil AM Fungi Diversity and Microbial Activities: The Implications for Agro-Ecosystem Resilience. PLoS ONE, 2012, 7, e47680.	2.5	40
21	Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a Mediterranean, semiarid degraded area. Plant and Soil, 2012, 354, 97-106.	3.7	49
22	Perennial plant species from semiarid gypsum soils support higher AMF diversity in roots than the annual Bromus rubens. Soil Biology and Biochemistry, 2012, 49, 132-138.	8.8	38
23	Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities., 2011, 21, 1696-1707.		99
24	Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biology and Biochemistry, 2011, 43, 167-173.	8.8	82
25	The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biology and Biochemistry, 2011, 43, 1498-1508.	8.8	78
26	A molecular approach to ascertain the success of "in situ―AM fungi inoculation in the revegetation of a semiarid, degraded land. Science of the Total Environment, 2011, 409, 2874-2880.	8.0	36
27	No tillage affects the phosphorus status, isotopic composition and crop yield of <i>Phaseolus vulgaris</i> in a rain-fed farming system. Journal of the Science of Food and Agriculture, 2011, 91, 268-272.	3. 5	12
28	Evidence of Differences between the Communities of Arbuscular Mycorrhizal Fungi Colonizing Galls and Roots of Prunus persica Infected by the Root-Knot Nematode Meloidogyne incognita. Applied and Environmental Microbiology, 2011, 77, 8656-8661.	3.1	25
29	Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology and Biochemistry, 2010, 42, 1114-1122.	8.8	93
30	Increased Diversity of Arbuscular Mycorrhizal Fungi in a Long-Term Field Experiment via Application of Organic Amendments to a Semiarid Degraded Soil. Applied and Environmental Microbiology, 2009, 75, 4254-4263.	3.1	57
31	Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth-promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biology and Biochemistry, 2009, 41, 1710-1716.	8.8	41
32	Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Molecular Biology, 2009, 70, 565-579.	3.9	95
33	Complexity of Semiarid Gypsophilous Shrub Communities Mediates the AMF Biodiversity at the Plant Species Level. Microbial Ecology, 2009, 57, 718-727.	2.8	32
34	Differential Effects of Pseudomonas mendocina and Glomus intraradices on Lettuce Plants Physiological Response and Aquaporin PIP2 Gene Expression Under Elevated Atmospheric CO2 and Drought. Microbial Ecology, 2009, 58, 942-951.	2.8	44
35	Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environmental Microbiology, 2009, 11, 2649-2659.	3.8	47
36	Plant Responses to Drought Stress and Exogenous ABA Application are Modulated Differently by Mycorrhization in Tomato and an ABA-deficient Mutant (Sitiens). Microbial Ecology, 2008, 56, 704-719.	2.8	111

#	Article	IF	Citations
37	Changes in biological activity of a degraded Mediterranean soil after using microbially-treated dry olive cake as a biosolid amendment and arbuscular mycorrhizal fungi. European Journal of Soil Biology, 2008, 44, 347-354.	3.2	24
38	THE IMPACT OF TILLAGE PRACTICES ON ARBUSCULAR MYCORRHIZAL FUNGAL DIVERSITY IN SUBTROPICAL CROPS. , 2008, 18, 527-536.		172
39	Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Functional Plant Biology, 2007, 34, 683.	2.1	37
40	Soil sustainability indicators following conservation tillage practices under subtropical maize and bean crops. Soil and Tillage Research, 2007, 93, 273-282.	5.6	88
41	Corrigendum to: Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Functional Plant Biology, 2007, 34, 860.	2.1	2
42	Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: Effect of AM fungi and organic amendments. Applied Soil Ecology, 2006, 33, 30-38.	4.3	41
43	Growth and nitrate reductase activity in Juniperus oxycedrus subjected to organic amendments and inoculation with arbuscular mycorrhizae. Journal of Plant Nutrition and Soil Science, 2006, 169, 501-505.	1.9	3
44	Effect of Arbuscular Mycorrhizae and Induced Drought Stress on Antioxidant Enzyme and Nitrate Reductase Activities in Juniperus oxycedrus L. Grown in a Composted Sewage Sludge-amended Semi-arid Soil. Plant and Soil, 2006, 279, 209-218.	3.7	37
45	Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biology and Biochemistry, 2005, 37, 227-233.	8.8	63
46	Establishment of Two Ectomycorrhizal Shrub Species in a Semiarid Site after in Situ Amendment with Sugar Beet, Rock Phosphate, and Aspergillus niger. Microbial Ecology, 2005, 49, 73-82.	2.8	48
47	Changes in rhizosphere microbial activity mediated by native or allochthonous AM fungi in the reafforestation of a Mediterranean degraded environment. Biology and Fertility of Soils, 2005, 41, 59-68.	4.3	50
48	Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma, 2005, 124, 375-382.	5.1	110
49	Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma, 2005, 129, 178-185.	5.1	135
50	Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Science, 2005, 169, 191-197.	3.6	72
51	Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Applied Soil Ecology, 2005, 30, 11-20.	4.3	136
52	Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Applied Soil Ecology, 2005, 30, 3-10.	4.3	111
53	Nutrient acquisition and nitrate reductase activity of mycorrhizal <i>Retama sphaerocarpa</i> L. seedlings afforested in an amended semiarid soil under two water regimes. Soil Use and Management, 2005, 21, 10-16.	4.9	13
54	AM fungi inoculation and addition of microbially-treated dry olive cake-enhanced afforestation of a desertified Mediterranean site. Land Degradation and Development, 2004, 15, 153-161.	3.9	16

#	Article	IF	CITATIONS
55	Establishment ofRetama sphaerocarpa L. seedlings on a degraded semiarid soil as influenced by mycorrhizal inoculation and sewage-sludge amendment. Journal of Plant Nutrition and Soil Science, 2004, 167, 637-644.	1.9	19
56	Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L Applied Soil Ecology, 2004, 25, 169-180.	4.3	60
57	INCREASED PLANT GROWTH, NUTRIENT UPTAKE, AND SOIL ENZYMATIC ACTIVITIES IN A DESERTIFIED MEDITERRANEAN SOIL AMENDED WITH TREATED RESIDUES AND INOCULATED WITH NATIVE MYCORRHIZAL FUNGI AND A PLANT GROWTH-PROMOTING YEAST. Soil Science, 2004, 169, 260-270.	0.9	47
58	Changes in Physical and Biological Soil Quality Indicators in a Tropical Crop System (Havana, Cuba) in Response to Different Agroecological Management Practices. Environmental Management, 2003, 32, 639-645.	2.7	19
59	Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresource Technology, 2003, 90, 65-70.	9.6	50
60	Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 2003, 118, 562-570.	5.2	115
61	Use of Nitrate Reductase Activity for Assessing Effectiveness of Mycorrhizal Symbiosis in Dorycnium pentaphyllum Under Induced Water Deficit. Communications in Soil Science and Plant Analysis, 2003, 34, 2291-2302.	1.4	21
62	Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area. Forest Ecology and Management, 2003, 182, 49-58.	3.2	101
63	Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Applied Soil Ecology, 2003, 22, 103-111.	4.3	143
64	Improvements in soil quality and performance of mycorrhizal <i>Cistus albidus</i> L. seedlings resulting from addition of microbially treated sugar beet residue to a degraded semiarid Mediterranean soil. Soil Use and Management, 2003, 19, 277-283.	4.9	15