Eszter BarÃ;th

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674292/publications.pdf

Version: 2024-02-01

29	1,179	15	24
papers	citations	h-index	g-index
30	30	30	1305
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Hydrogenative depolymerization of silicon-modified polyureas. Chemical Communications, 2022, 58, 5415-5418.	4.1	3
2	Alkylation of lignin-derived aromatic oxygenates with cyclic alcohols on acidic zeolites. Applied Catalysis B: Environmental, 2021, 281, 119424.	20.2	16
3	Selective Heterogeneous Transfer Hydrogenation from Tertiary Amines to Alkynes. ACS Catalysis, 2021, 11, 5405-5415.	11.2	4
4	Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science, 2021, 372, 952-957.	12.6	79
5	Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angewandte Chemie - International Edition, 2021, 60, 24806-24810.	13.8	16
6	Rýcktitelbild: Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols (Angew. Chem. 47/2021). Angewandte Chemie, 2021, 133, 25368-25368.	2.0	0
7	Rate enhancement of phenol hydrogenation on Pt by hydronium ions in the aqueous phase. Journal of Catalysis, 2021, 404, 579-593.	6.2	16
8	Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts. Synthesis, 2020, 52, 504-520.	2.3	10
9	Towards understanding and predicting the hydronium ion catalyzed dehydration of cyclic-primary, secondary and tertiary alcohols. Journal of Catalysis, 2020, 390, 237-243.	6.2	14
10	A Celebration of Science amidst Nature: The 54th BÃ $\frac{1}{4}$ rgenstock Conference. Angewandte Chemie - International Edition, 2019, 58, 17107-17113.	13.8	0
11	Ein Fest der Wissenschaft inmitten der Natur: Die 54. BÃ⅓rgenstockâ€Konferenz. Angewandte Chemie, 2019, 131, 17265-17271.	2.0	O
12	Catalytic Decomposition of the Oleaginous Yeast <i>Cutaneotrichosporon Oleaginosus</i> and Subsequent Biocatalytic Conversion of Liberated Free Fatty Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 6531-6540.	6.7	4
13	Rate enhancement by Cu in Ni _x Cu _{1â^²x} /ZrO ₂ bimetallic catalysts for hydrodeoxygenation of stearic acid. Catalysis Science and Technology, 2019, 9, 2620-2629.	4.1	22
14	Influence of Hydronium Ions in Zeolites on Sorption. Angewandte Chemie - International Edition, 2019, 58, 3450-3455.	13.8	83
15	Influence of Hydronium Ions in Zeolites on Sorption. Angewandte Chemie, 2019, 131, 3488-3493.	2.0	13
16	Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature Catalysis, 2018, 1, 141-147.	34.4	85
17	H-Transfer reactions of internal alkenes with tertiary amines as H-donors on carbon supported noble metals. Organic and Biomolecular Chemistry, 2018, 16, 1172-1177.	2.8	10
18	Hydrogen Transfer Reactions of Carbonyls, Alkynes, and Alkenes with Noble Metals in the Presence of Alcohols/Ethers and Amines as Hydrogen Donors. Catalysts, 2018, 8, 671.	3 . 5	59

#	Article	IF	CITATIONS
19	Enhancing the catalytic activity of hydronium ions through constrained environments. Nature Communications, 2017, 8, 14113.	12.8	94
20	Carbon–Carbon Bond Scission Pathways in the Deoxygenation of Fatty Acids on Transition-Metal Sulfides. ACS Catalysis, 2017, 7, 1068-1076.	11.2	44
21	Hydronium-lon-Catalyzed Elimination Pathways of Substituted Cyclohexanols in Zeolite H-ZSM5. ACS Catalysis, 2017, 7, 7822-7829.	11.2	22
22	Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides. ACS Catalysis, 2017, 7, 6331-6341.	11.2	83
23	Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol. Journal of Catalysis, 2017, 352, 329-336.	6.2	40
24	Controlling Hydrodeoxygenation of Stearic Acid to <i>n</i> â€Heptadecane and <i>n</i> â€Octadecane by Adjusting the Chemical Properties of Ni/SiO ₂ â€"ZrO ₂ Catalyst. ChemCatChem, 2017, 9, 195-203.	3.7	53
25	Bulk and γâ€ʿAl2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid. Applied Catalysis B: Environmental, 2016, 180, 301-311.	20.2	76
26	Impact of the Oxygen Defects and the Hydrogen Concentration on the Surface of Tetragonal and Monoclinic ZrO ₂ on the Reduction Rates of Stearic Acid on Ni/ZrO ₂ . Chemistry - A European Journal, 2015, 21, 2423-2434.	3.3	90
27	Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chemistry, 2015, 17, 1204-1218.	9.0	241
28	FY17-PDH-EVTest04 GodInput Impact of the Oxygen Defects1 FY17-PDH-EVTest04 Reduction Rates of Stearic AcidFY17-PDH-T04. Chemistry - A European Journal, 2015, , 2436-2434.	3.3	0
29	Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angewandte Chemie, 0, , .	2.0	2