Serena Ivaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167353/publications.pdf

Version: 2024-02-01

		471509	361022
57	1,873 citations	17	35
papers	citations	h-index	g-index
59	59	59	1875
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Progress and prospects of the human–robot collaboration. Autonomous Robots, 2018, 42, 957-975.	4.8	415
2	Evaluating the Engagement with Social Robots. International Journal of Social Robotics, 2015, 7, 465-478.	4.6	154
3	Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to iCub answers. Computers in Human Behavior, 2016, 61, 633-655.	8.5	137
4	Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 152-164.	4.9	125
5	Force feedback exploiting tactile and proximal force/torque sensing. Autonomous Robots, 2012, 33, 381-398.	4.8	74
6	Autonomy in Physical Human-Robot Interaction: A Brief Survey. IEEE Robotics and Automation Letters, 2021, 6, 7989-7996.	5.1	73
7	Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human–Robot Assembly Task. International Journal of Social Robotics, 2017, 9, 63-86.	4.6	69
8	Human movement and ergonomics: An industry-oriented dataset for collaborative robotics. International Journal of Robotics Research, 2019, 38, 1529-1537.	8.5	64
9	Tools for simulating humanoid robot dynamics: A survey based on user feedback. , 2014, , .		62
10	Learning compact parameterized skills with a single regression. , 2013, , .		54
11	Object Learning Through Active Exploration. IEEE Transactions on Autonomous Mental Development, 2014, 6, 56-72.	1.6	50
12	Deep unsupervised network for multimodal perception, representation and classification. Robotics and Autonomous Systems, 2015, 71, 83-98.	5.1	43
13	Activity Recognition for Ergonomics Assessment of Industrial Tasks With Automatic Feature Selection. IEEE Robotics and Automation Letters, 2019, 4, 1132-1139.	5.1	41
14	Learning inverse dynamics models with contacts. , 2015, , .		38
15	The use of exoskeletons to help with prone positioning in the intensive care unit during COVID-19. Annals of Physical and Rehabilitation Medicine, 2020, 63, 379-382.	2.3	34
16	Robot initiative in a team learning task increases the rhythm of interaction but not the perceived engagement. Frontiers in Neurorobotics, 2014, 8, 5.	2.8	27
17	A Multimode Teleoperation Framework for Humanoid Loco-Manipulation: An Application for the iCub Robot. IEEE Robotics and Automation Magazine, 2019, 26, 73-82.	2.0	25
18	The CoDyCo Project Achievements and Beyond: Toward Human Aware Whole-Body Controllers for Physical Human Robot Interaction. IEEE Robotics and Automation Letters, 2018, 3, 516-523.	5.1	21

#	Article	IF	CITATIONS
19	Prediction of Intention during Interaction with iCub with Probabilistic Movement Primitives. Frontiers in Robotics and Al, 2017, 4, .	3.2	19
20	Learning to Exploit Proximal Force Sensing: A Comparison Approach. Studies in Computational Intelligence, 2010, , 149-167.	0.9	19
21	Generating Assistive Humanoid Motions for Co-Manipulation Tasks with a Multi-Robot Quadratic Program Controller. , 2018, , .		17
22	Assessing the efficiency of exoskeletons in physical strain reduction by biomechanical simulation with AnyBody Modeling System. Wearable Technologies, 2021, 2, .	3.1	17
23	Learning a repertoire of actions with deep neural networks. , 2014, , .		15
24	Ethical and Social Considerations for the Introduction of Human-Centered Technologies at Work. , 2018, , .		15
25	Human Posture Prediction During Physical Human-Robot Interaction. IEEE Robotics and Automation Letters, 2021, 6, 6046-6053.	5.1	15
26	Inertial parameters identification and joint torques estimation with proximal force/torque sensing. , 2015, , .		14
27	From passive to interactive object learning and recognition through self-identification on a humanoid robot. Autonomous Robots, 2016, 40, 33-57.	4.8	14
28	Predicting Extraversion from Non-verbal Features During a Face-to-Face Human-Robot Interaction. Lecture Notes in Computer Science, 2015, , 543-553.	1.3	14
29	Learning to recognize objects through curiosity-driven manipulation with the iCub humanoid robot. , 2013, , .		13
30	Automated Prediction of Extraversion During Human–Humanoid Interaction. International Journal of Social Robotics, 2017, 9, 385-399.	4.6	13
31	Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European project. Robotics and Autonomous Systems, 2017, 90, 97-117.	5.1	13
32	Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback. , 2011 , , .		12
33	Perception and human interaction for developmental learning of objects and affordances. , 2012, , .		12
34	Multi-Objective Trajectory Optimization to Improve Ergonomics in Human Motion. IEEE Robotics and Automation Letters, 2022, 7, 342-349.	5.1	12
35	Autonomous online learning of velocity kinematics on the iCub: A comparative study. , 2012, , .		11
36	Learning Robust Task Priorities and Gains for Control of Redundant Robots. IEEE Robotics and Automation Letters, 2020, 5, 2626-2633.	5.1	10

#	Article	IF	Citations
37	Learning torque control in presence of contacts using tactile sensing from robot skin. , 2015, , .		9
38	Trial-and-error learning of repulsors for humanoid QP-based whole-body control., 2017,,.		7
39	Special issue on whole-body control of contacts and dynamics for humanoid robots. Autonomous Robots, 2016, 40, 425-428.	4.8	6
40	Learning Robust Task Priorities of QP-Based Whole-Body Torque-Controllers. , 2018, , .		6
41	Multimodal People Engagement with iCub. Advances in Intelligent Systems and Computing, 2013, , 59-64.	0.6	6
42	Analysis of Human Whole-Body Joint Torques During Overhead Work With a Passive Exoskeleton. IEEE Transactions on Human-Machine Systems, 2022, 52, 1060-1068.	3 . 5	6
43	One-Shot Evaluation of the Control Interface ofÂaÂRobotic Arm by Non-experts. Lecture Notes in Computer Science, 2016, , 458-468.	1.3	5
44	Humanoid Whole-Body Movement Optimization from Retargeted Human Motions. , 2019, , .		5
45	Human-Humanoid Interaction and Cooperation: a Review. Current Robotics Reports, 2021, 2, 441-454.	7.9	5
46	Latent Ergonomics Maps: Real-Time Visualization of Estimated Ergonomics of Human Movements. Sensors, 2022, 22, 3981.	3.8	5
47	Improving object learning through manipulation and robot self-identification. , 2013, , .		4
48	Grasping objects localized from uncertain point cloud data. Robotics and Autonomous Systems, 2014, 62, 1742-1754.	5.1	4
49	Prediction of Human Whole-Body Movements with AE- ProMPs. , 2018, , .		4
50	Learning the velocity kinematics of ICUB for model-based control: XCSF versus LWPR. , 2011, , .		3
51	Safe trajectory optimization for whole-body motion of humanoids. , 2017, , .		3
52	Using Exoskeletons to Assist Medical Staff During Prone Positioning of Mechanically Ventilated COVID-19 Patients: A Pilot Study. Lecture Notes in Networks and Systems, 2021, , 88-100.	0.7	3
53	Optimal control of communication in energy constrained sensor networks through team theory and Extended RItz Method. , 2009, , .		1
54	An Application of Receding-Horizon Neural Control in Humanoid Robotics. Lecture Notes in Control and Information Sciences, 2009, , 541-550.	1.0	1

#	Article	IF	CITATIONS
55	First Do Not Fall: Learning to Exploit a Wall With a Damaged Humanoid Robot. IEEE Robotics and Automation Letters, 2022, 7, 9028-9035.	5.1	1
56	Free Simulation Software and Library. , 2019, , 2111-2130.		0
57	Free Simulation Software and Library. , 2017, , 1-20.		O