Matthew A Schiefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1672217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peripheral Nerve Models. , 2022, , 2697-2702.		0
2	Selective stimulation of human intrinsic laryngeal muscles: Analysis in a mathematical threeâ€dimensional space. Laryngoscope, 2020, 130, 967-973.	2.0	2
3	Hypoglossal nerve stimulation in a rabbit model of obstructive sleep apnea reduces apneas and improves oxygenation. Journal of Applied Physiology, 2020, 129, 442-448.	2.5	4
4	Quantification of clinically applicable stimulation parameters for precision near-organ neuromodulation of human splenic nerves. Communications Biology, 2020, 3, 577.	4.4	14
5	Toward Standardization of Electrophysiology and Computational Tissue Strain in Rodent Intracortical Microelectrode Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 416.	4.1	12
6	Temporal Modulation of the Response of Sensory Fibers to Paired-Pulse Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1676-1683.	4.9	11
7	Hypoglossal nerve stimulation in a pre-clinical anesthetized rabbit model relevant to OSA. Respiratory Physiology and Neurobiology, 2018, 250, 31-38.	1.6	5
8	Sensory adaptation to electrical stimulation of the somatosensory nerves. Journal of Neural Engineering, 2018, 15, 046002.	3.5	99
9	Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE, 2018, 13, e0207659.	2.5	91
10	Home Use of a Neural-connected Sensory Prosthesis Provides the Functional and Psychosocial Experience of Having a Hand Again. Scientific Reports, 2018, 8, 9866.	3.3	168
11	Sciatic nerve stimulation and its effects on upper airway resistance in the anesthetized rabbit model relevant to sleep apnea. Journal of Applied Physiology, 2018, 125, 763-769.	2.5	2
12	The neural basis of perceived intensity in natural and artificial touch. Science Translational Medicine, 2016, 8, 362ra142.	12.4	205
13	Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. Journal of Neural Engineering, 2016, 13, 016001.	3.5	202
14	Computer Models of Peripheral Nerves. , 2015, , 1021-1032.		0
15	Peripheral Nerve Interfaces. , 2015, , 1033-1054.		3
16	Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. Journal of Neural Engineering, 2015, 12, 026002.	3.5	125
17	Peripheral Nerve Models. , 2014, , 1-7.		2
18	A neural interface provides long-term stable natural touch perception. Science Translational Medicine, 2014, 6, 257ra138.	12.4	613

MATTHEW A SCHIEFER

#	Article	IF	CITATIONS
19	Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. , 2013, , .		17
20	Probabilistic modeling of selective stimulation of the human sciatic nerve with a flat interface nerve electrode. Journal of Computational Neuroscience, 2012, 33, 179-190.	1.0	37
21	Efficient search and fit methods to find nerve stimulation parameters for multi-contact electrodes. , 2011, 2011, 7238-41.		2
22	Probabilistic modeling of selective stimulation of the human sciatic nerve with a flat Interface Nerve Electrode. , 2011, 2011, 4068-71.		2
23	Intraoperative Demonstration of Selective Stimulation of the Common Human Femoral Nerve with a FINE. , 2009, 2009, 610-3.		6
24	Fascicular Perineurium Thickness, Size, and Position Affect Model Predictions of Neural Excitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 572-581.	4.9	113
25	A Model of Selective Activation of the Femoral Nerve With a Flat Interface Nerve Electrode for a Lower Extremity Neuroprosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 195-204.	4.9	118
26	Intraoperative Evaluation of the Spiral Nerve Cuff Electrode for a Standing Neuroprosthesis. , 2007, , .		3
27	Intraoperative Evaluation of the First Flat Interface Nerve Electrode for a Standing Neuroprosthesis: A Case Report. , 2007, , .		0
28	Models of Selective Stimulation with a Flat Interface Nerve Electrode for Standing Neuroprosthetic Systems. , 2006, 2006, 4639-42.		4
29	Sites of neuronal excitation by epiretinal electrical stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 5-13.	4.9	65
30	Models of Selective Stimulation with a Flat Interface Nerve Electrode for Standing Neuroprosthetic Systems. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	2
31	Structural mechanisms to produce differential dendritic gains. Brain Research, 2005, 1033, 117-127.	2.2	5