Scot C Leary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1671571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in COX15 Produce a Defect in the Mitochondrial Heme Biosynthetic Pathway, Causing Early-Onset Fatal Hypertrophic Cardiomyopathy. American Journal of Human Genetics, 2003, 72, 101-114.	6.2	296
2	A Targetable Fluorescent Sensor Reveals That Copper-Deficient <i>SCO1</i> and <i>SCO2</i> Patient Cells Prioritize Mitochondrial Copper Homeostasis. Journal of the American Chemical Society, 2011, 133, 8606-8616.	13.7	255
3	Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Human Molecular Genetics, 2003, 12, 2693-2702.	2.9	219
4	Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Human Molecular Genetics, 2004, 13, 1839-1848.	2.9	203
5	The Human Cytochrome c Oxidase Assembly Factors SCO1 and SCO2 Have Regulatory Roles in the Maintenance of Cellular Copper Homeostasis. Cell Metabolism, 2007, 5, 9-20.	16.2	197
6	p53 Improves Aerobic Exercise Capacity and Augments Skeletal Muscle Mitochondrial DNA Content. Circulation Research, 2009, 105, 705-712.	4.5	164
7	Human Sco1 and Sco2 Function as Copper-binding Proteins. Journal of Biological Chemistry, 2005, 280, 34113-34122.	3.4	147
8	Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1. Human Molecular Genetics, 2009, 18, 2230-2240.	2.9	139
9	The mitochondrion: a central architect of copper homeostasis. Metallomics, 2017, 9, 1501-1512.	2.4	105
10	The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. Journal of Biological Chemistry, 2018, 293, 1887-1896.	3.4	105
11	"Pulling the plug―on cellular copper: The role of mitochondria in copper export. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 146-153.	4.1	103
12	Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118867.	4.1	103
13	Copper Import into the Mitochondrial Matrix in Saccharomyces cerevisiae Is Mediated by Pic2, a Mitochondrial Carrier Family Protein. Journal of Biological Chemistry, 2013, 288, 23884-23892.	3.4	91
14	Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Human Molecular Genetics, 2014, 23, 2901-2913.	2.9	82
15	Redox Regulation of SCO Protein Function: Controlling Copper at a Mitochondrial Crossroad. Antioxidants and Redox Signaling, 2010, 13, 1403-1416.	5.4	79
16	Chronic Treatment with Azide in Situ Leads to an Irreversible Loss of Cytochrome c Oxidase Activity via Holoenzyme Dissociation. Journal of Biological Chemistry, 2002, 277, 11321-11328.	3.4	70
17	Cooperation between COA6 and SCO2 in COX2 Maturation during Cytochrome c Oxidase Assembly Links Two Mitochondrial Cardiomyopathies. Cell Metabolism, 2015, 21, 823-833.	16.2	68
18	Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8161-8166.	7.1	63

SCOT C LEARY

#	Article	IF	CITATIONS
19	COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux. Molecular Biology of the Cell, 2013, 24, 683-691.	2.1	58
20	Oxidative Phosphorylation: Synthesis of Mitochondrially Encoded Proteins and Assembly of Individual Structural Subunits into Functional Holoenzyme Complexes. Methods in Molecular Biology, 2009, 554, 143-162.	0.9	48
21	Isolated Cytochrome c Oxidase Deficiency in G93A SOD1 Mice Overexpressing CCS Protein. Journal of Biological Chemistry, 2008, 283, 12267-12275.	3.4	41
22	The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis. Cell Reports, 2015, 10, 933-943.	6.4	37
23	COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Reports, 2019, 29, 4114-4126.e5.	6.4	37
24	Novel Mutations in <i>SCO1</i> as a Cause of Fatal Infantile Encephalopathy and Lactic Acidosis. Human Mutation, 2013, 34, 1366-1370.	2.5	36
25	Building the CuA site of cytochrome c oxidase: A complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. Journal of Biological Chemistry, 2018, 293, 4644-4652.	3.4	36
26	The P174L Mutation in Human Sco1 Severely Compromises Cox17-dependent Metallation but Does Not Impair Copper Binding. Journal of Biological Chemistry, 2006, 281, 12270-12276.	3.4	34
27	IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell and Bioscience, 2016, 6, 30.	4.8	32
28	The Aβ(1–38) peptide is a negative regulator of the Aβ(1–42) peptide implicated in Alzheimer disease progression. Scientific Reports, 2021, 11, 431.	3.3	32
29	Bioenergetic remodeling during cellular differentiation: changes in cytochrome c oxidase regulation do not affect the metabolic phenotype. Biochemistry and Cell Biology, 2004, 82, 391-399.	2.0	28
30	Mitochondrial biogenesis: Which part of "NO―do we understand?. BioEssays, 2003, 25, 538-541.	2.5	27
31	A hemizygous SCO2 mutation in an early onset rapidly progressive, fatal cardiomyopathy. Molecular Genetics and Metabolism, 2006, 89, 129-133.	1.1	27
32	The Janus face of copper: its expanding roles in biology and the pathophysiology of disease. EMBO Reports, 2007, 8, 224-227.	4.5	22
33	The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart. Human Molecular Genetics, 2017, 26, 4617-4628.	2.9	20
34	Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. ELife, 2021, 10, .	6.0	19
35	Blue Native Polyacrylamide Gel Electrophoresis: A Powerful Diagnostic Tool for the Detection of Assembly Defects in the Enzyme Complexes of Oxidative Phosphorylation. Methods in Molecular Biology, 2012, 837, 195-206.	0.9	18
36	Advances in visualization of copper in mammalian systems using X-ray fluorescence microscopy. Current Opinion in Chemical Biology, 2020, 55, 19-25.	6.1	17

SCOT C LEARY

#	Article	IF	CITATIONS
37	The intrinsically kinase-inactive EPHB6 receptor predisposes cancer cells to DR5-induced apoptosis by promoting mitochondrial fragmentation. Oncotarget, 2016, 7, 77865-77877.	1.8	13
38	Cellular Uptake and Distribution of Gemini Surfactant Nanoparticles Used as Gene Delivery Agents. AAPS Journal, 2019, 21, 98.	4.4	9
39	The Energy Sensor AMPKα1 Is Critical in Rapamycin-Inhibition of mTORC1-S6K-Induced T-cell Memory. International Journal of Molecular Sciences, 2022, 23, 37.	4.1	7
40	Prosurvival IL-7–Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1–TCF1–ld3 and Metabolic AMPKα1–ULK1–ATG7 Pathways. Journal of Immunology, 2022, 208, 1	55-168.	7
41	The determination of gemini surfactants used as gene delivery agents in cellular matrix using validated tandem mass spectrometric method. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 164-172.	2.8	3
42	Homeostatic control of nuclear-encoded mitochondrial gene expression by the histone variant H2A.Z is essential for neuronal survival. Cell Reports, 2021, 36, 109704.	6.4	2
43	Distinct strengths of mTORC1 control T-cell memory via transcriptional FOXO1 and metabolic AMPKα1 pathways in linear cell differentiation and asymmetric cell division models. , 2022, , .		1