Binh Khanh Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1670773/publications.pdf

Version: 2024-02-01

46 papers 1,052 citations

³⁶¹⁴¹³
20
h-index

30 g-index

57 all docs

57 docs citations

57 times ranked

1088 citing authors

#	Article	IF	CITATIONS
1	Top Leads for Swine Influenza A/H1N1 Virus Revealed by Steered Molecular Dynamics Approach. Journal of Chemical Information and Modeling, 2010, 50, 2236-2247.	5.4	84
2	Steered Molecular Dynamics-A Promising Tool for Drug Design. Current Bioinformatics, 2012, 7, 342-351.	1.5	73
3	Neuraminidase inhibitor R-125489 – A promising drug for treating influenza virus: Steered molecular dynamics approach. Biochemical and Biophysical Research Communications, 2011, 410, 688-691.	2.1	66
4	Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes. Journal of Physical Chemistry Letters, 2015, 6, 1472-1476.	4.6	64
5	Efficient Formation of 2,3-Dihydrofurans via Iron-Catalyzed Cycloisomerization of \hat{l}_{\pm} -Allenols. ACS Catalysis, 2018, 8, 12-16.	11.2	42
6	Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective Î ² -Fluoride Elimination. Journal of the American Chemical Society, 2021, 143, 13759-13768.	13.7	40
7	Inversion of Enantioselectivity in Allene Gas versus Allyl Acetate Reductive Aldehyde Allylation Guided by Metal-Centered Stereogenicity: An Experimental and Computational Study. ACS Catalysis, 2019, 9, 9158-9163.	11.2	39
8	Highly Selective Palladium-Catalyzed Hydroborylative Carbocyclization of Bisallenes to Seven-Membered Rings. Journal of the American Chemical Society, 2018, 140, 14324-14333.	13.7	38
9	Study of Tamiflu Sensitivity to Variants of A/H5N1 Virus Using Different Force Fields. Journal of Chemical Information and Modeling, 2011, 51, 2266-2276.	5.4	36
10	Mechanisms of Rh-Catalyzed Oxyfluorination and Oxytrifluoromethylation of Diazocarbonyl Compounds with Hypervalent Fluoroiodine. ACS Catalysis, 2018, 8, 4483-4492.	11.2	35
11	Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C–H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces. Inorganic Chemistry, 2016, 55, 3844-3852.	4.0	33
12	Confronting the Challenging Asymmetric Carbonyl 1,2-Addition Using Vinyl Heteroarene Pronucleophiles: Ligand-Controlled Regiodivergent Processes through a Dearomatized Allyl–Cu Species. Journal of the American Chemical Society, 2022, 144, 5985-5995.	13.7	32
13	Tropylium-Promoted Hydroboration Reactions: Mechanistic Insights <i>Via</i> Experimental and Computational Studies. Journal of Organic Chemistry, 2021, 86, 9117-9133.	3.2	31
14	Mechanical Unfolding of Acylphosphatase Studied by Single-Molecule Force Spectroscopy and MD Simulations. Biophysical Journal, 2010, 99, 238-247.	0.5	26
15	Diastereoselective Synthesis of $\langle i \rangle N \langle i \rangle$ -Protected 2,3-Dihydropyrroles via Iron-Catalyzed Cycloisomerization of \hat{l} ±-Allenic Sulfonamides. ACS Catalysis, 2019, 9, 1733-1737.	11.2	26
16	How Does CO ₂ React with Styrene Oxide in Co-MOF-74 and Mg-MOF-74? Catalytic Mechanisms Proposed by QM/MM Calculations. Journal of Physical Chemistry C, 2018, 122, 503-514.	3.1	25
17	Estimation of the Binding Free Energy of AC1NX476 toÂHIVâ€1 Protease Wild Type and Mutations Using FreeÂEnergy Perturbation Method. Chemical Biology and Drug Design, 2015, 86, 546-558.	3.2	24
18	Proton Transfer Dependence on Hydrogen-Bonding of Solvent to the Water Wire: A Theoretical Study. Journal of Physical Chemistry B, 2013, 117, 307-315.	2.6	23

#	Article	IF	Citations
19	Efficient Stereoselective Carbocyclization to <i>cis</i> -1,4-Disubstituted Heterocycles Enabled by Dual Pd/Electron Transfer Mediator (ETM) Catalysis. Journal of the American Chemical Society, 2020, 142, 5751-5759.	13.7	21
20	Mechanisms of Rh-Catalyzed Oxyaminofluorination and Oxyaminotrifluoromethylthiolation of Diazocarbonyl Compounds with Electrophilic Reagents. Organic Letters, 2018, 20, 6646-6649.	4.6	20
21	Unusual Alternating Crystallization-Induced Emission Enhancement Behavior in Nonconjugated ω-Phenylalkyl Tropylium Salts. Journal of the American Chemical Society, 2021, 143, 20384-20394.	13.7	20
22	The Kinetic Isotope Effect as a Probe of Spin Crossover in the CH Activation of Methane by the FeO ⁺ Cation. Angewandte Chemie - International Edition, 2015, 54, 3946-3951.	13.8	19
23	Controlling cyclization pathways in palladium(<scp>ii</scp>)-catalyzed intramolecular alkene hydro-functionalization <i>via</i> substrate directivity. Chemical Science, 2020, 11, 11307-11314.	7.4	19
24	Improving <scp>ligandâ€ranking</scp> of <scp>AutoDock</scp> Vina by changing the empirical parameters. Journal of Computational Chemistry, 2022, 43, 160-169.	3.3	19
25	Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M ^{pro} . RSC Advances, 2022, 12, 3729-3737.	3.6	19
26	Enantioselective Iridium-Catalyzed Allylation of Nitroalkanes: Entry to \hat{l}^2 -Stereogenic \hat{l}_\pm -Quaternary Primary Amines. Journal of the American Chemical Society, 2021, 143, 9343-9349.	13.7	18
27	Adequate prediction for inhibitor affinity of $\hat{Al^2}$ (sub>40 protofibril using the linear interaction energy method. RSC Advances, 2019, 9, 12455-12461.	3.6	16
28	C–N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp ³)–H Amination: A Combined Computational and Experimental Investigation. Journal of the American Chemical Society, 2022, 144, 11215-11225.	13.7	15
29	Development and Characterization of Monomeric N-End Rule Inhibitors through <i>In Vitro</i> Substrates. Journal of Medicinal Chemistry, 2013, 56, 2540-2546.	6.4	13
30	Tropolonate Salts as Acyl-Transfer Catalysts under Thermal and Photochemical Conditions: Reaction Scope and Mechanistic Insights. ACS Catalysis, 2020, 10, 12596-12606.	11,2	13
31	Theoretical Studies for Large Tunneling and the Hydrogenâ€Transfer Mechanism in the CïŁ¿H Activation of CH ₃ CN by a Di(νâ€oxo)diiron(IV) Complex: A Model for Intermediate Q in Soluble Methane Monooxygenase. Chemistry - A European Journal, 2013, 19, 3568-3572.	3.3	12
32	Lithium Cuprate Coupling Reactions: Evaluation of Computational Methods for Determination of the Reaction Mechanisms. Journal of Physical Chemistry A, 2010, 114, 5005-5015.	2.5	11
33	Characterization of mammalian N-degrons and development of heterovalent inhibitors of the N-end rule pathway. Chemical Science, 2013, 4, 3339.	7.4	10
34	Substrate-Dependent H/D Kinetic Isotope Effects and the Role of the Di($\hat{1}\frac{1}{4}$ -oxo)diiron(IV) Core in Soluble Methane Monooxygenase: A Theoretical Study. Chemistry - A European Journal, 2014, 20, 6532-6541.	3.3	9
35	Kinetic Isotope Effects as a Probe for the Protonolysis Mechanism of Alkylmetal Complexes: VTST/MT Calculations Based on DFT Potential Energy Surfaces. Inorganic Chemistry, 2016, 55, 9822-9829.	4.0	9
36	Carbenoid Alkene Insertion Reactions of Oxiranyllithiums. Journal of Organic Chemistry, 2012, 77, 8605-8614.	3.2	7

3

#	Article	IF	CITATIONS
37	VTST/MT studies of the catalytic mechanism of Câ€"H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)â€"O cores based on DFT potential energy surfaces. Journal of Biological Inorganic Chemistry, 2017, 22, 321-338.	2.6	7
38	Excitedâ \in State Multiple Proton Transfer Depending on the Acidity and Basicity of Mediating Alcohols in 7â \in Azaindoleâ \in "($<$ scp $>$ ROH $<$ /scp $>$) $<$ sub $>$ 2 $<$ /sub $>$ (R=H, $<$ scp $>$ CH $<$ /scp $>$ $<$ sub $>$ 3 $<$ /sub $>$) Complexes: A Theoretical Study. Photochemistry and Photobiology, 2015, 91, 306-314.	2.5	6
39	Esterification of Tertiary Amides: Remarkable Additive Effects of Potassium Alkoxides for Generating Hetero Manganese–Potassium Dinuclear Active Species. Chemistry - A European Journal, 2020, 26, 10735-10742.	3.3	6
40	Kinetic, ESI–CID–MS, and Computational Studies of π-Allyliridium <i>C,O</i> Benzoate-Catalyzed Allylic Amination: Understanding the Effect of Cesium Ion. ACS Catalysis, 2022, 12, 3660-3668.	11.2	6
41	The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Neurotherapeutics, 2021, 18, 1768-1782.	4.4	5
42	Unraveling the Mechanism of the Ir ^{III} â€Catalyzed Regiospecific Synthesis of αâ€Chlorocarbonyl Compounds from Allylic Alcohols. Chemistry - A European Journal, 2020, 26, 14978-14986.	3.3	4
43	Ring Contraction of Tropylium Ions into Benzenoid Derivatives. Organic Letters, 2022, 24, 2520-2525.	4.6	3
44	Long-range proton relay shows an inverse linear free energy relationship depending on the pKa of the hydrogen-bonded wire. RSC Advances, 2015, 5, 2669-2676.	3.6	2
45	Mechanisms of Metal-Catalyzed Electrophilic F/CF3/SCF3 Transfer Reactions from Quantum Chemical Calculations. Topics in Organometallic Chemistry, 2020, , 39-56.	0.7	2
46	Esterification of Tertiary Amides: Remarkable Additive Effects of Potassium Alkoxides for Generating Hetero Manganese–Potassium Dinuclear Active Species. Chemistry - A European Journal, 2020, 26, 10647-10647.	3.3	0