George Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1668539/publications.pdf

Version: 2024-02-01

		4	44069	51608
87	10,116		48	86
papers	citations		h-index	g-index
		,		
90	90		90	15289
all docs	docs citations		times ranked	citing authors

#	Article	IF	CITATIONS
1	Intrahepatic microbes govern liver immunity by programming NKT cells. Journal of Clinical Investigation, 2022, 132, .	8.2	23
2	SSAT State-of-the-Art Conference: Advancements in the Microbiome. Journal of Gastrointestinal Surgery, 2021, 25, 1885-1895.	1.7	1
3	Fungi, host immune response, and tumorigenesis. American Journal of Physiology - Renal Physiology, 2021, 321, G213-G222.	3.4	13
4	SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. Journal of Experimental Medicine, 2021, 218, .	8.5	138
5	î³Î´T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 2020, 71, 477-494.	7.3	41
6	CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer. Cancer Cell, 2020, 37, 37-54.e9.	16.8	138
7	Targeting the interleukin-17 immune axis for cancer immunotherapy. Journal of Experimental Medicine, 2020, 217, .	8.5	105
8	<i>In Vivo</i> Epigenetic CRISPR Screen Identifies <i>Asf1a</i> as an Immunotherapeutic Target in <i>Kras</i> -Mutant Lung Adenocarcinoma. Cancer Discovery, 2020, 10, 270-287.	9.4	129
9	Upregulation of ZIP14 and Altered Zinc Homeostasis in Muscles in Pancreatic Cancer Cachexia. Cancers, 2020, 12, 3.	3.7	29
10	Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 2020, 22, 1130-1142.	10.3	28
11	Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nature Communications, 2020, 11, 4311.	12.8	29
12	Regulation and modulation of antitumor immunity in pancreatic cancer. Nature Immunology, 2020, 21, 1152-1159.	14.5	128
13	Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Science Immunology, 2020, 5, .	11.9	69
14	Progress Toward Identifying Exact Proxies for Predicting Response to Immunotherapies. Frontiers in Cell and Developmental Biology, 2020, 8, 155.	3.7	32
15	PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nature Immunology, 2020, 21, 442-454.	14.5	228
16	Regulatory T Cells Keep Pancreatic Cancer at Bay. Cancer Discovery, 2020, 10, 345-347.	9.4	8
17	Epigenetic CRISPR Screens Identify <i>Npm1</i> as a Therapeutic Vulnerability in Non–Small Cell Lung Cancer. Cancer Research, 2020, 80, 3556-3567.	0.9	17
18	Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels. Oncogene, 2020, 39, 3102-3113.	5.9	61

#	Article	IF	Citations
19	Innate \hat{l} T Cells Mediate Antitumor Immunity by Orchestrating Immunogenic Macrophage Programming. Cancer Discovery, 2019, 9, 1288-1305.	9.4	19
20	Harnessing the Microbiome for Pancreatic Cancer Immunotherapy. Trends in Cancer, 2019, 5, 670-676.	7.4	45
21	Microbes as biomarkers and targets in pancreatic cancer. Nature Reviews Clinical Oncology, 2019, 16, 665-666.	27.6	15
22	The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature, 2019, 574, 264-267.	27.8	489
23	Virome and bacteriome: two sides of the same coin. Current Opinion in Virology, 2019, 37, 37-43.	5.4	41
24	Identification of a RIP1 Kinase Inhibitor Clinical Candidate (GSK3145095) for the Treatment of Pancreatic Cancer. ACS Medicinal Chemistry Letters, 2019, 10, 857-862.	2.8	52
25	Rethinking T Cells in Pancreas Cancer. Clinical Cancer Research, 2019, 25, 3747-3749.	7.0	0
26	Specialized dendritic cells induce tumor-promoting IL-10+IL-17+ FoxP3neg regulatory CD4+ T cells in pancreatic carcinoma. Nature Communications, 2019, 10, 1424.	12.8	56
27	The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology, 2019, 156, 2097-2115.e2.	1.3	73
28	Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. Oncogene, 2019, 38, 4512-4526.	5.9	27
29	STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene, 2019, 38, 533-548.	5.9	96
30	Phase II multi-institutional study of nivolumab (Nivo), cabiralizumab (Cabira), and stereotactic body radiotherapy (SBRT) for locally advanced unresectable pancreatic cancer (LAUPC) Journal of Clinical Oncology, 2019, 37, TPS4163-TPS4163.	1.6	3
31	The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 2018, 8, 403-416.	9.4	834
32	Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 2018, 67, 120-127.	12.1	536
33	RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer. Cancer Cell, 2018, 34, 757-774.e7.	16.8	170
34	Association of dietary fibre intake and gut microbiota in adults. British Journal of Nutrition, 2018, 120, 1014-1022.	2.3	63
35	A taxonomic signature of obesity in a large study of American adults. Scientific Reports, 2018, 8, 9749.	3.3	192
36	SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models. Cancer Discovery, 2018, 8, 1237-1249.	9.4	216

#	Article	IF	CITATIONS
37	Initial experience of combination nivolumab and local-regional treatment in patients with advanced hepatocellular carcinoma (HCC) Journal of Clinical Oncology, 2018, 36, e16149-e16149.	1.6	5
38	Macrophages in Nonalcoholic Steatohepatitis: Friend or Foe?. European Medical Journal Hepatology, 2018, 6, 100-109.	1.0	22
39	Cancer Manipulation of Host Physiology: Lessons from Pancreatic Cancer. Trends in Molecular Medicine, 2017, 23, 465-481.	6.7	31
40	Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nature Medicine, 2017, 23, 556-567.	30.7	254
41	NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. Journal of Experimental Medicine, 2017, 214, 1711-1724.	8.5	176
42	The role of $\hat{I}^3\hat{I}$ Cells in pancreatic cancer: what could this mean for the clinic?. Expert Review of Gastroenterology and Hepatology, 2017, 11, 609-610.	3.0	0
43	Molecular Pathways: The Necrosome—A Target for Cancer Therapy. Clinical Cancer Research, 2017, 23, 1132-1136.	7.0	35
44	Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer. Cell Reports, 2017, 20, 558-571.	6.4	273
45	Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations. World Journal of Clinical Oncology, 2017, 8, 230.	2.3	52
46	The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome, 2016, 4, 69.	11.1	206
47	The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature, 2016, 532, 245-249.	27.8	454
48	Mincle Signaling Promotes Con A Hepatitis. Journal of Immunology, 2016, 197, 2816-2827.	0.8	33
49	TIMPing Fate: Why Pancreatic Cancer Cells Sojourn in the Liver. Gastroenterology, 2016, 151, 807-808.	1.3	O
50	$\hat{I}^{3}\hat{I}^{\prime}$ T Cells Support Pancreatic Oncogenesis by Restraining $\hat{I}^{\pm}\hat{I}^{2}$ T Cell Activation. Cell, 2016, 166, 1485-1499.e15.	28.9	266
51	Necroptotic cell death – An unexpected driver of pancreatic oncogenesis. Cell Cycle, 2016, 15, 2095-2096.	2.6	4
52	Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology, 2016, 150, 1659-1672.e5.	1.3	139
53	Mincle suppresses Toll-like receptor 4 activation. Journal of Leukocyte Biology, 2016, 100, 185-194.	3.3	19
54	Comparative effectiveness of combination TACE/ablation vs. monotherapy in hepatocellular carcinoma Journal of Clinical Oncology, 2016, 34, 350-350.	1.6	0

#	Article	IF	CITATIONS
55	Antitumor activity of melinjo (⟨i⟩Gnetum gnemon⟨/i⟩ L.) seed extract in human and murine tumor models in vitro and in aÂcolonâ€26 tumorâ€bearing mouse model in vivo. Cancer Medicine, 2015, 4, 1767-1780.	2.8	36
56	Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways. Cell Reports, 2015, 13, 1909-1921.	6.4	71
57	Human Pancreatic Cancer Tumors Are Nutrient Poor and Tumor Cells Actively Scavenge Extracellular Protein. Cancer Research, 2015, 75, 544-553.	0.9	673
58	TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. Journal of Experimental Medicine, 2015, 212, 2077-2094.	8.5	142
59	TGF- \hat{l}^2 Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia. PLoS ONE, 2015, 10, e0132786.	2.5	66
60	TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. Journal of Cell Biology, 2015, 211, 21120IA232.	5.2	1
61	Pancreatic Cancer, Inflammation, and Microbiome. Cancer Journal (Sudbury, Mass), 2014, 20, 195-202.	2.0	137
62	Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nature Medicine, 2014, 20, 377-384.	30.7	213
63	Interleukin 17–Producing γÎT Cells Promote Hepatic Regeneration in Mice. Gastroenterology, 2014, 147, 473-484.e2.	1.3	64
64	Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology, 2013, 58, 589-602.	7.3	139
65	Role of Fatty-Acid Synthesis in Dendritic Cell Generation and Function. Journal of Immunology, 2013, 190, 4640-4649.	0.8	90
66	Induction of TRIF- or MYD88-dependent pathways perturbs cell cycle regulation in pancreatic cancer. Cell Cycle, 2013, 12, 1153-1154.	2.6	13
67	Signaling via MYD88 in the pancreatic tumor microenvironment. Oncolmmunology, 2013, 2, e22567.	4.6	17
68	MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. Journal of Experimental Medicine, 2012, 209, 1671-1687.	8.5	254
69	Dendritic Cell Populations With Different Concentrations of Lipid Regulate Tolerance and Immunity in Mouse and Human Liver. Gastroenterology, 2012, 143, 1061-1072.	1.3	140
70	Oncogenic Kras-Induced GM-CSF Production Promotes the Development of Pancreatic Neoplasia. Cancer Cell, 2012, 21, 836-847.	16.8	589
71	Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. Journal of Clinical Investigation, 2012, 122, 4118-4129.	8.2	173
72	Dendritic Cells Promote Pancreatic Viability in Mice With Acute Pancreatitis. Gastroenterology, 2011, 141, 1915-1926.e14.	1.3	56

#	Article	IF	Citations
73	Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology, 2011, 54, 959-968.	7.3	72
74	In Hepatic Fibrosis, Liver Sinusoidal Endothelial Cells Acquire Enhanced Immunogenicity. Journal of Immunology, 2010, 185, 2200-2208.	0.8	86
75	Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. Journal of Leukocyte Biology, 2009, 87, 713-725.	3.3	88
76	In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF- \hat{l}_{\pm} . Journal of Clinical Investigation, 2009, 119, 3213-25.	8.2	226
77	Retroperitoneal Perforation of the Duodenum from Biliary Stent Erosion. Journal of Surgical Education, 2005, 62, 512-515.	0.7	34
78	Perforated Duodenal Diverticulitis: A Report of Three Cases. Digestive Surgery, 2005, 22, 198-202.	1.2	41
79	Liver Dendritic Cells Are Less Immunogenic Than Spleen Dendritic Cells because of Differences in Subtype Composition. Journal of Immunology, 2004, 172, 1009-1017.	0.8	201
80	Impact of mandatory resident work hour limitations on medical students' interest in surgery. Journal of the American College of Surgeons, 2004, 199, 615-619.	0.5	48
81	Attitudes of applicants for surgical residency toward work hour limitations. American Journal of Surgery, 2004, 188, 131-135.	1.8	9
82	GM-CSF expands dendritic cells and their progenitors in mouse liver. Hepatology, 2003, 37, 641-652.	7.3	36
83	Optimization of dendritic cell maturation and gene transfer by recombinant adenovirus. Cancer Immunology, Immunotherapy, 2003, 52, 347-358.	4.2	26
84	Overexpression of interleukinâ€12 enables dendritic cells to activate NK cells and confer systemic antitumor immunity. FASEB Journal, 2003, 17, 728-730.	0.5	41
85	Murine Flt3 Ligand Expands Distinct Dendritic Cells with Both Tolerogenic and Immunogenic Properties. Journal of Immunology, 2003, 170, 3554-3564.	0.8	61
86	Endogenous Granulocyte-Macrophage Colony-Stimulating Factor Overexpression In Vivo Results in the Long-Term Recruitment of a Distinct Dendritic Cell Population with Enhanced Immunostimulatory Function. Journal of Immunology, 2002, 169, 2875-2885.	0.8	63
87	Adenovirus infection enhances dendritic cell immunostimulatory properties and induces natural killer and T-cell-mediated tumor protection. Cancer Research, 2002, 62, 5260-6.	0.9	89