Massimo De Felici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1667278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Secreted Proteins from Prepubertal Ovarian Tissues Exposed In Vitro to Cisplatin and LH. Cells, 2022, 11, 1208.	4.1	1
2	Impaired primordial follicle assembly in offspring ovaries from zearalenone-exposed mothers involves reduced mitochondrial activity and altered epigenetics in oocytes. Cellular and Molecular Life Sciences, 2022, 79, 258.	5.4	10
3	Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cellular and Molecular Life Sciences, 2021, 78, 695-713.	5.4	38
4	Di (2-ethylhexyl) phthalate impairs primordial follicle assembly by increasing PDE3A expression in oocytes. Environmental Pollution, 2021, 270, 116088.	7.5	15
5	Stimulated by retinoic acid gene 8 (STRA8) interacts with the germ cell specific bHLH factor SOHLH1 and represses câ€KIT expression in vitro. Journal of Cellular and Molecular Medicine, 2021, 25, 383-396.	3.6	7
6	The p63 C-terminus is essential for murine oocyte integrity. Nature Communications, 2021, 12, 383.	12.8	23
7	To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. International Journal of Molecular Sciences, 2021, 22, 5982.	4.1	23
8	Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. Environmental Research, 2021, 198, 111225.	7.5	21
9	PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. International Journal of Molecular Sciences, 2021, 22, 9838.	4.1	27
10	Protective Mechanism of Luteinizing Hormone and Follicle-Stimulating Hormone Against Nicotine-Induced Damage of Mouse Early Folliculogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 723388.	3.7	3
11	miR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis. Cell Death and Disease, 2020, 11, 737.	6.3	17
12	Expression and possible roles of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cell development. Journal of Reproduction and Development, 2020, 66, 399-409.	1.4	7
13	Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biology, 2020, 18, e3001025.	5.6	71
14	Identification of oxidative stress–related <i>Xdh</i> gene as a di(2â€ethylhexyl)phthalate (DEHP) target and the use of melatonin to alleviate the DEHPâ€induced impairments in newborn mouse ovaries. Journal of Pineal Research, 2019, 67, e12577.	7.4	37
15	Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cellular and Molecular Life Sciences, 2019, 76, 1729-1746.	5.4	60
16	Effects of activin A on the transcriptome of mouse oogenesis in vitro. Journal of Cellular Physiology, 2019, 234, 14339-14350.	4.1	4
17	Distinct effects of epirubicin, cisplatin and cyclophosphamide on ovarian somatic cells of prepuberal ovaries. Aging, 2019, 11, 10532-10556.	3.1	5
18	Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nature Structural and Molecular Biology, 2018, 25, 261-269.	8.2	112

#	Article	IF	CITATIONS
19	Starvation during pregnancy impairs fetal oogenesis and folliculogenesis in offspring in the mouse. Cell Death and Disease, 2018, 9, 452.	6.3	17
20	Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. Journal of Pineal Research, 2018, 65, e12497.	7.4	51
21	Germ Cell Migration. , 2018, , .		Ο
22	Protective effects of melatonin against nicotine-induced disorder of mouse early folliculogenesis. Aging, 2018, 10, 463-480.	3.1	25
23	Exposure to Zinc oxide nanoparticles during pregnancy induces oocyte DNA damage and affects ovarian reserve of mouse offspring. Aging, 2018, 10, 2170-2189.	3.1	36
24	Prospermatogonia. , 2018, , 19-23.		1
25	Origin and Development of Primordial Germ Cells. , 2018, , 364-369.		Ο
26	Nicotine exposure impairs germ cell development in human fetal ovaries cultured in vitro. Aging, 2018, 10, 1556-1574.	3.1	11
27	Programmed cell death in the human ovary. Minerva Ginecologica, 2018, 70, 549-560.	0.8	21
28	Starvation at birth impairs germ cell cyst breakdown and increases autophagy and apoptosis in mouse oocytes. Cell Death and Disease, 2017, 8, e2613-e2613.	6.3	41
29	Complete in vitro oogenesis: retrospects and prospects. Cell Death and Differentiation, 2017, 24, 1845-1852.	11.2	35
30	Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro. Cell Death and Disease, 2017, 8, e2966-e2966.	6.3	71
31	LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death and Differentiation, 2017, 24, 72-82.	11.2	82
32	Di (2-ethylhexyl) phthalate impairs steroidogenesis in ovarian follicular cells of prepuberal mice. Archives of Toxicology, 2017, 91, 1279-1292.	4.2	56
33	Cytotoxic effects of ZnO nanoparticles on mouse testicular cells. International Journal of Nanomedicine, 2016, Volume 11, 5187-5203.	6.7	90
34	Di(2â€ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. Environmental and Molecular Mutagenesis, 2016, 57, 579-588.	2.2	44
35	Skin-derived stem cells as a source of primordial germ cell- and oocyte-like cells. Cell Death and Disease, 2016, 7, e2471-e2471.	6.3	23
36	The Formation and Migration of Primordial Germ Cells in Mouse and Man. Results and Problems in Cell Differentiation, 2016, 58, 23-46.	0.7	33

#	Article	IF	CITATIONS
37	Epigenetic Reprogramming in the Mammalian Germ Line: Possible Effects by Endocrine Disruptors on Primordial Germ Cells. Open Biotechnology Journal, 2016, 10, 36-41.	1.2	4
38	Multifaceted programmed cell death in the mammalian fetal ovary. International Journal of Developmental Biology, 2015, 59, 51-54.	0.6	33
39	DAZ Family Proteins, Key Players for Germ Cell Development. International Journal of Biological Sciences, 2015, 11, 1226-1235.	6.4	75
40	Programmed Cell death in Development and Tumors. International Journal of Developmental Biology, 2015, 59, 1-3.	0.6	6
41	Programmed cell death in mouse primordial germ cells. International Journal of Developmental Biology, 2015, 59, 41-49.	0.6	15
42	Hematopoietic activity in putative mouse primordial germ cell populations. Mechanisms of Development, 2015, 136, 53-63.	1.7	23
43	SOHLH1 and SOHLH2 directly down-regulate STIMULATED BY RETINOIC ACID 8 (STRA8) expression. Cell Cycle, 2015, 14, 1036-1045.	2.6	17
44	Activin A Accelerates the Progression of Fetal Oocytes Throughout Meiosis and Early Oogenesis in the Mouse. Stem Cells and Development, 2015, 24, 2455-2465.	2.1	22
45	Gonadal development and germ cell tumors in mouse and humans. Seminars in Cell and Developmental Biology, 2015, 45, 114-123.	5.0	18
46	Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle, 2014, 13, 782-791.	2.6	51
47	Diâ€(2â€ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. Environmental and Molecular Mutagenesis, 2014, 55, 343-353.	2.2	99
48	Recovery of Functional Oocytes from Cultured Premeiotic Germ Cells After Kidney Capsule Transplantation. Stem Cells and Development, 2013, 22, 567-580.	2.1	17
49	Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environmental and Molecular Mutagenesis, 2013, 54, 354-361.	2.2	105
50	Male germ cells and cancer: a connection among pluripotency, differentiation and stem cell biology. International Journal of Developmental Biology, 2013, 57, 101-103.	0.6	2
51	Minimal Concentrations of Retinoic Acid Induce Stimulation by Retinoic Acid 8 and Promote Entry into Meiosis in Isolated Pregonadal and Gonadal Mouse Primordial Germ Cells. Biology of Reproduction, 2013, 88, 145-145.	2.7	26
52	Seeking the origin of female germline stem cells in the mammalian ovary. Reproduction, 2013, 146, R125-R130.	2.6	20
53	Origin, Migration, and Proliferation of Human Primordial Germ Cells. , 2013, , 19-37.		63
54	From testis to teratomas: a brief history of male germ cells in mammals. International Journal of Developmental Biology, 2013, 57, 115-121.	0.6	11

#	Article	IF	CITATIONS
55	Endocrine disruptors, gene deregulation and male germ cell tumors. International Journal of Developmental Biology, 2013, 57, 225-239.	0.6	38
56	The Control of Cell Cycle in Mouse Primordial Germ Cells: Old and New Players. Current Pharmaceutical Design, 2012, 18, 233-244.	1.9	20
57	Reply to: Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nature Medicine, 2012, 18, 1172-1174.	30.7	51
58	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
59	Growth of Mouse Oocytes to Maturity from Premeiotic Germ Cells In Vitro. PLoS ONE, 2012, 7, e41771.	2.5	31
60	Poly(ADP-ribosyl)ation Acts in the DNA Demethylation of Mouse Primordial Germ Cells Also with DNA Damage-Independent Roles. PLoS ONE, 2012, 7, e46927.	2.5	60
61	Characterization of the Endocannabinoid System in Mouse Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 139-147.	2.1	18
62	Identification of side population cells in mouse primordial germ cells and prenatal testis. International Journal of Developmental Biology, 2011, 55, 209-214.	0.6	13
63	Impaired meiotic competence in putative primordial germ cells produced from mouse embryonic stem cells. International Journal of Developmental Biology, 2011, 55, 215-222.	0.6	23
64	Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution. Stem Cells International, 2011, 2011, 1-15.	2.5	33
65	Correlation of oocyte morphometry parameters with woman's age. Journal of Assisted Reproduction and Genetics, 2011, 28, 545-552.	2.5	31
66	Embryotoxicity assays for leached components from dental restorative materials. Reproductive Biology and Endocrinology, 2011, 9, 136.	3.3	24
67	DNA Damage and Apoptosis in Fetal and Ovarian Reserve Oocytes. , 2011, , 143-163.		3
68	Programmed Cell Death in Fetal Oocytes. , 2011, , 125-142.		1
69	Rapid estrogen signalling in mouse primordial germ cells. Experimental Cell Research, 2010, 316, 1716-1727.	2.6	30
70	Estrogenic in vitro assay on mouse embryonic Leydig cells. International Journal of Developmental Biology, 2010, 54, 717-722.	0.6	14
71	Germ stem cells in the mammalian adult ovary: considerations by a fan of the primordial germ cells. Molecular Human Reproduction, 2010, 16, 632-636.	2.8	53
72	Ablation of the Sam68 gene impairs female fertility and gonadotropin-dependent follicle development. Human Molecular Genetics, 2010, 19, 4886-4894.	2.9	37

#	Article	IF	CITATIONS
73	Opposing effects of retinoic acid and FGF9 on <i>Nanos2</i> expression and meiotic entry of mouse germ cells. Journal of Cell Science, 2010, 123, 871-880.	2.0	138
74	STRA8 Shuttles between Nucleus and Cytoplasm and Displays Transcriptional Activity. Journal of Biological Chemistry, 2009, 284, 35781-35793.	3.4	76
75	Proapoptotic Effects of Lindane on Mouse Primordial Germ Cells. Toxicological Sciences, 2009, 108, 445-451.	3.1	14
76	Regulators of mitotic proliferation in mouse primordial germ cells. Reproduction, 2009, 138, 185.	2.6	0
77	Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nature Medicine, 2009, 15, 1179-1185.	30.7	307
78	Estrogen Receptorâ€nediated Transcriptional Activity of Genistein in the Mouse Testis. Annals of the New York Academy of Sciences, 2009, 1163, 475-477.	3.8	5
79	Identification of Multipotent Cytotrophoblast Cells from Human First Trimester Chorionic Villi. Cloning and Stem Cells, 2009, 11, 535-556.	2.6	28
80	In or Out Stemness: Comparing Growth Factor Signalling in Mouse Embryonic Stem Cells and Primordial Germ Cells. Current Stem Cell Research and Therapy, 2009, 4, 87-97.	1.3	45
81	DNA methyltransferase loading, but not de novo methylation, is an oocyte-autonomous process stimulated by SCF signalling. Developmental Biology, 2008, 321, 238-250.	2.0	27
82	Cell death in fetal oocytes: Many players for multiple pathways. Autophagy, 2008, 4, 240-242.	9.1	66
83	Genistein is an Efficient Estrogen in the Whole-Body throughout Mouse Development. Toxicological Sciences, 2008, 103, 57-67.	3.1	37
84	Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR). Frontiers in Bioscience - Landmark, 2008, 13, 2989.	3.0	23
85	Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Developmental Biology, 2007, 306, 572-583.	2.0	101
86	Isolation of apoptotic mouse fetal oocytes by AnnexinV assay. International Journal of Developmental Biology, 2007, 51, 157-160.	0.6	13
87	Lindane may modulate the female reproductive development through the interaction with ER-β: an in vivo–in vitro approach. Chemico-Biological Interactions, 2007, 169, 1-14.	4.0	46
88	Comparative transcript profiles of cell cycle-related genes in mouse primordial germ cells, embryonic stem cells and embryonic germ cells. Gene Expression Patterns, 2007, 7, 714-721.	0.8	20
89	Interleukin-2 induces the proliferation of mouse primordial germ cells in vitro. International Journal of Developmental Biology, 2007, 51, 731-738.	0.6	15
90	Association of genetic markers within the KIT and KITLG genes with human male infertility. Human Reproduction, 2006, 21, 3185-3192.	0.9	40

#	Article	IF	CITATIONS
91	câ€Flip expression and function in fetal mouse gonocytes. FASEB Journal, 2006, 20, 124-126.	0.5	15
92	Stage-variations of anandamide hydrolase activity in the mouse uterus during the natural oestrus cycle. Journal of Experimental & Clinical Assisted Reproduction, 2006, 3, 3.	0.4	9
93	DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Developmental Dynamics, 2005, 232, 992-1002.	1.8	72
94	Adhesion molecules for mouse primordial germ cells. Frontiers in Bioscience - Landmark, 2005, 10, 542.	3.0	32
95	In VitroRestoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement. Human Gene Therapy, 2005, 16, 869-880.	2.7	27
96	Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Developmental Biology, 2005, 285, 49-56.	2.0	108
97	Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death. Reproductive BioMedicine Online, 2005, 10, 182-191.	2.4	94
98	Experimental approaches to the study of primordial germ cell lineage and proliferation. Human Reproduction Update, 2004, 10, 197-206.	10.8	71
99	Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics, 2003, 82, 230-237.	2.9	142
100	Akt/PTEN Signaling Mediates Estrogen-Dependent Proliferation of Primordial Germ Cellsin Vitro. Molecular Endocrinology, 2003, 17, 2630-2638.	3.7	88
101	Kit regulatory elements required for expression in developing hematopoietic and germ cell lineages. Blood, 2003, 102, 3954-3962.	1.4	77
102	In Vitro Development of Growing Oocytes from Fetal Mouse Oocytes: Stage-Specific Regulation by Stem Cell Factor and Granulosa Cells. Developmental Biology, 2002, 244, 85-95.	2.0	103
103	Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mechanisms of Development, 2002, 112, 15-24.	1.7	78
104	A comparative study of cytotoxic effects of N-ethyl-N-nitrosourea, adriamycin, and mono-(2-ethylhexyl)phthalate on mouse primordial germ cells. Cell Biology and Toxicology, 2002, 18, 131-145.	5.3	19
105	KL/KIT co-expression in mouse fetal oocytes. International Journal of Developmental Biology, 2002, 46, 1015-21.	0.6	26
106	Zona pellucida solubility and cortical granule complements in human oocytes following assisted reproductive techniques. Zygote, 2001, 9, 201-210.	1.1	22
107	Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. FEBS Journal, 2000, 267, 2991-2997.	0.2	109
108	A Role for E-cadherin in Mouse Primordial Germ Cell Development. Developmental Biology, 2000, 226, 209-219.	2.0	110

#	Article	IF	CITATIONS
109	Phage Display Screening Reveals an Association Between Germline-specific Transcription Factor Oct-4 and Multiple Cellular Proteins. Journal of Molecular Biology, 2000, 304, 529-540.	4.2	59
110	Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. FEBS Journal, 2000, 267, 2991-2997.	0.2	3
111	Effects of Fetuin on Zona Pellucida Hardening and Fertilizability of Equine Oocytes Matured In Vitro1. Biology of Reproduction, 1999, 61, 533-540.	2.7	55
112	In vitro adhesiveness of mouse primordial germ cells to cellular and extracellular matrix component substrata. Microscopy Research and Technique, 1998, 43, 258-264.	2.2	19
113	In Vitro Culture Systems for Germ Cells from Mouse Embryo: Primordial Germ Cells and Oocytes. Advances in Experimental Medicine and Biology, 1998, 444, 41-49.	1.6	8
114	The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mechanisms of Development, 1997, 68, 37-44.	1.7	75
115	Ovarian follicular atresia: a model for apoptosis. Cell Death and Differentiation, 1997, 4, 260-261.	11.2	7
116	Apoptosis in reproductive biology. Cell Death and Differentiation, 1997, 4, 169-170.	11.2	4
117	Stem Cell Factor Regulation of Apoptosis in Mouse Primordial Germ Cells. , 1997, , 19-31.		4
118	Mammalian oocyte growth in vitro is stimulated by soluble factor(s) produced by preantral granulosa cells and by Sertoli cells. Molecular Reproduction and Development, 1996, 44, 540-546.	2.0	30
119	Purification of Mouse Primordial Germ Cells by MiniMACS Magnetic Separation System. Developmental Biology, 1995, 170, 722-725.	2.0	106
120	Immunoaffinity Purification of Migratory Mouse Primordial Germ Cells. Experimental Cell Research, 1995, 216, 277-279.	2.6	15
121	Apoptosis in mouse primordial germ cells: a study by transmission and scanning electron microscope. Anatomy and Embryology, 1994, 189, 435-40.	1.5	66
122	Low-affinity nerve growth factor receptor is expressed during testicular morphogenesis and in germ cells at specific stages of spermatogenesis. Molecular Reproduction and Development, 1994, 37, 157-166.	2.0	28
123	Histotypic in vitro reorganization of dissociated cells from mouse fetal gonads. Differentiation, 1994, 56, 137-142.	1.9	13
124	Growth factors in mouse primordial germ cell migration and proliferation. Progress in Growth Factor Research, 1994, 5, 135-143.	1.6	40
125	Interactions Between Migratory Primordial Germ Cells and Cellular Substrates in the Mouse. Novartis Foundation Symposium, 1994, 182, 140-156.	1.1	5
126	Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells. Molecular Reproduction and Development, 1993, 35, 134-139.	2.0	85

#	Article	IF	CITATIONS
127	Proliferation of Mouse Primordial Germ Cells in Vitro: A Key Role for cAMP. Developmental Biology, 1993, 157, 277-280.	2.0	72
128	Leukemia inhibitory factor sustains the survival of mouse primordial germ cells cultured on TM4 feeder layers. Developmental Biology, 1991, 147, 281-284.	2.0	108
129	An increase of intracellular free Ca2+ is essential for spontaneous meiotic resumption by mouse oocytes. The Journal of Experimental Zoology, 1991, 260, 401-405.	1.4	48
130	Culture of Fetal Ovarian Tissues. , 1991, , 311-320.		0
131	Selective binding of mouse and human spermatozoa to beads coated with extracellular matrix components. Molecular Reproduction and Development, 1990, 27, 337-343.	2.0	11
132	Influence of cumulus cell processes on oolemma permeability and lethality of isolated mouse oocytes cultured in Ca2+-free medium. Gamete Research, 1989, 23, 245-253.	1.7	4
133	In vitro adhesion of mouse fetal germ cells to extracellular matrix components. Cell Differentiation and Development, 1989, 26, 87-96.	0.4	59
134	Fetal germ cells establish cell coupling with follicle cells in vitro. Cell Differentiation and Development, 1989, 28, 65-69.	0.4	12
135	Chapter 7 Cellular Interactions of Mouse Fetal Germ Cells In In Vitro Systems. Current Topics in Developmental Biology, 1987, 23, 147-162.	2.2	14
136	Involvement of thiol-disulfide groups in the sensitivity of fully grown mouse oocytes to calcium-free medium. The Journal of Experimental Zoology, 1987, 243, 283-287.	1.4	7
137	Macrophages in the urogenital ridge of the mid-gestation mouse fetus. Cell Differentiation, 1986, 18, 119-129.	0.4	18
138	Effect of Follicle-stimulating Hormone on Cyclic Adenosine Monophosphate Level and on Meiotic Maturation in Mouse Cumulus Cell-enclosed Oocytes Cultured in Vitro1. Biology of Reproduction, 1985, 33, 797-802.	2.7	77
139	Synthesis of glycoconjugates in mouse primordial germ cells. Developmental Biology, 1985, 109, 375-380.	2.0	7
140	Binding of fluorescent lectins to the surface of germ cells from fetal and early postnatal mouse gonads. Gamete Research, 1984, 10, 423-432.	1.7	17
141	Meiotic resumption and intracellular cAMP levels in mouse oocytes treated with compounds which act on cAMP metabolism. Cell Differentiation, 1983, 12, 271-276.	0.4	123
142	Survival of isolated, fully grown mouse ovarian oocytes is strictly dependent on external Ca2+. Developmental Biology, 1982, 92, 539-543.	2.0	43
143	Isolation of mouse primordial germ cells. Experimental Cell Research, 1982, 142, 476-482.	2.6	100
144	?Spontaneous? hardening of the zona pellucida of mouse oocytes during in vitro culture. Gamete Research, 1982, 6, 107-113.	1.7	157

#	Article	IF	CITATIONS
145	Fertilization-induced changes in concanavalin A binding to mouse eggs. Experimental Cell Research, 1981, 132, 41-45.	2.6	7
146	Changes in concanavalin A-mediated agglutinability of mouse oocytes during meiosis. Developmental Biology, 1980, 76, 428-434.	2.0	7
147	Local anesthetics and phenothiazine tranquilizers induce parthenogenetic activation of the mouse oocyte. Developmental Biology, 1978, 65, 531-535.	2.0	13