Stewart Shuman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16672/publications.pdf

Version: 2024-02-01

346 14,706 61 96
papers citations h-index g-index

349 349 349 9185
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cleavage-Polyadenylation Factor Cft1 and SPX Domain Proteins Are Agents of Inositol Pyrophosphate Toxicosis in Fission Yeast. MBio, 2022, 13, e0347621.	1.8	13
2	Fission yeast Duf89 and Duf8901 are cobalt/nickel-dependent phosphatase–pyrophosphatases that act via a covalent aspartyl–phosphate intermediate. Journal of Biological Chemistry, 2022, 298, 101851.	1.6	1
3	Genetic screen for suppression of transcriptional interference reveals fission yeast 14–3–3 protein Rad24 as an antagonist of precocious Pol2 transcription termination. Nucleic Acids Research, 2022, 50, 803-819.	6.5	7
4	Structure–activity relationships at a nucleobase-stacking tryptophan required for chemomechanical coupling in the DNA resecting motor-nuclease AdnAB. Nucleic Acids Research, 2022, 50, 952-961.	6.5	2
5	Activities and Structure-Function Analysis of Fission Yeast Inositol Pyrophosphate (IPP) Kinase-Pyrophosphatase Asp1 and Its Impact on Regulation of <i>pho1</i> Gene Expression. MBio, 2022, 13, e0103422.	1.8	13
6	Activity and substrate specificity of <i>Candida</i> , <i>Aspergillus</i> , and <i>Coccidioides</i> Tpt1: essential tRNA splicing enzymes and potential antifungal targets. Rna, 2021, 27, 616-627.	1.6	5
7	Structure of 3′-PO ₄ /5′-OH RNA ligase RtcB in complex with a 5′-OH oligonucleotide. Rna, 2021, 27, 584-590.	1.6	15
8	Transcriptional profiling of fission yeast RNA polymerase II CTD mutants. Rna, 2021, 27, 560-570.	1.6	8
9	Clutch mechanism of chemomechanical coupling in a DNA resecting motor nuclease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2023955118.	3.3	6
10	Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genetics, 2021, 17, e1009452.	1.5	5
11	Oligomeric quaternary structure of <i>Escherichia coli</i> and <i>Mycobacterium smegmatis</i> Lhr helicases is nucleated by a novel C-terminal domain composed of five winged-helix modules. Nucleic Acids Research, 2021, 49, 3876-3887.	6.5	4
12	NMR solution structures of Runella slithyformis RNA 2′-phosphotransferase Tpt1 provide insights into NAD+ binding and specificity. Nucleic Acids Research, 2021, 49, 9607-9624.	6.5	2
13	Structure and mechanism of <i>Mycobacterium smegmatis</i> polynucleotide phosphorylase. Rna, 2021, 27, 959-969.	1.6	8
14	Genetic screen for suppression of transcriptional interference identifies a gain-of-function mutation in Pol2 termination factor Seb1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	10
15	<i>Pseudomonas putida</i> MPE, a manganese-dependent endonuclease of the binuclear metallophosphoesterase superfamily, incises single-strand DNA in two orientations to yield a mixture of 3′-PO4 and 3′-OH termini. Nucleic Acids Research, 2021, 49, 1023-1032.	6.5	0
16	A genetic screen for suppressors of hyper-repression of the fission yeast PHO regulon by Pol2 CTD mutation T4A implicates inositol 1-pyrophosphates as agonists of precocious lncRNA transcription termination. Nucleic Acids Research, 2020, 48, 10739-10752.	6.5	16
17	Transcriptional interference at tandem lncRNA and protein-coding genes: an emerging theme in regulation of cellular nutrient homeostasis. Nucleic Acids Research, 2020, 48, 8243-8254.	6.5	38
18	Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation. Nucleic Acids Research, 2020, 48, 5603-5615.	6.5	1

#	Article	IF	CITATIONS
19	Substrate analogs that trap the 2′-phospho-ADP-ribosylated RNA intermediate of the Tpt1 (tRNA) Tj ETQq1 1 C	.784314 ı 1.6	ggT/Overlo
20	Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO–POL enzyme. Nucleic Acids Research, 2020, 48, 3165-3180.	6.5	10
21	Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA $3\hat{a} \in \mathbb{R}^2$ processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Nucleic Acids Research, 2020, 48, 4811-4826.	6.5	14
22	Inactivation of fission yeast Erh1 de-represses <i>pho1</i> expression: evidence that Erh1 is a negative regulator of <i>prt</i> lncRNA termination. Rna, 2020, 26, 1334-1344.	1.6	6
23	Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3′ processing and transcription termination. Nucleic Acids Research, 2019, 47, 8452-8469.	6.5	38
24	Atomic structures of the RNA end-healing $5\hat{a}\in^2$ -OH kinase and $2\hat{a}\in^2$ -cyclic phosphodiesterase domains of fungal tRNA ligase: conformational switches in the kinase upon binding of the GTP phosphate donor. Nucleic Acids Research, 2019, 47, 11826-11838.	6.5	4
25	Structure-Function Analysis of the Phosphoesterase Component of the Nucleic Acid End-Healing Enzyme Runella slithyformis HD-Pnk. Journal of Bacteriology, 2019, 201, .	1.0	0
26	NAD+-dependent RNA terminal $2\hat{a} \in 2$ and $3\hat{a} \in 2$ phosphomonoesterase activity of a subset of Tpt1 enzymes. Rna, 2019, 25, 783-792.	1.6	6
27	Structure of Fission Yeast Transcription Factor Pho7 Bound to $\langle i \rangle$ pho1 $\langle i \rangle$ Promoter DNA and Effect of Pho7 Mutations on DNA Binding and Phosphate Homeostasis. Molecular and Cellular Biology, 2019, 39, .	1.1	9
28	Activity and structure of Pseudomonas putida MPE, a manganese-dependent single-strand DNA endonuclease encoded in a nucleic acid repair gene cluster. Journal of Biological Chemistry, 2019, 294, 7931-7941.	1.6	9
29	Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates. Journal of Biological Chemistry, 2019, 294, 5094-5104.	1.6	16
30	RNA ligation precedes the retrotransposition of U6/LINE-1 chimeric RNA. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20612-20622.	3.3	23
31	Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24507-24516.	3.3	16
32	Structure of tRNA splicing enzyme Tpt1 illuminates the mechanism of RNA 2′-PO4 recognition and ADP-ribosylation. Nature Communications, 2019, 10, 218.	5.8	20
33	Structure and two-metal mechanism of fungal tRNA ligase. Nucleic Acids Research, 2019, 47, 1428-1439.	6.5	16
34	Domain Requirements and Genetic Interactions of the Mud1 Subunit of the Saccharomyces cerevisiae U1 snRNP. G3: Genes, Genomes, Genetics, 2019, 9, 145-151.	0.8	1
35	A long noncoding (lnc)RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes. Journal of Biological Chemistry, 2018, 293, 4456-4467.	1.6	30
36	Defining essential elements and genetic interactions of the yeast Lsm2–8 ring and demonstration that essentiality of Lsm2–8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24. Rna, 2018, 24, 853-864.	1.6	8

#	Article	IF	Citations
37	Structure of mycobacterial 3′-to-5′ RNA:DNA helicase Lhr bound to a ssDNA tracking strand highlights distinctive features of a novel family of bacterial helicases. Nucleic Acids Research, 2018, 46, 442-455.	6.5	11
38	The t ⁶ A modification acts as a positive determinant for the anticodon nuclease PrrC, and is distinctively nonessential in <i>Streptococcus mutans</i> . RNA Biology, 2018, 15, 508-517.	1.5	11
39	Poly(A) site choice and Pol2 CTD Serine-5 status govern IncRNA control of phosphate-responsive <i>tgp1</i> gene expression in fission yeast. Rna, 2018, 24, 237-250.	1.6	26
40	Characterization of Lhr-Core DNA helicase and manganese- dependent DNA nuclease components of a bacterial gene cluster encoding nucleic acid repair enzymes. Journal of Biological Chemistry, 2018, 293, 17491-17504.	1.6	16
41	Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and $5\hat{a} \in \mathbb{R}^2$ exonuclease activities. Nucleic Acids Research, 2018, 46, 4164-4175.	6.5	9
42	RNA polymerase II CTD interactome with $3\hat{a} \in \mathbb{R}^2$ processing and termination factors in fission yeast and its impact on phosphate homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10652-E10661.	3.3	33
43	Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis. Nucleic Acids Research, 2018, 46, 11262-11273.	6.5	13
44	NAD+-dependent synthesis of a 5′-phospho-ADP-ribosylated RNA/DNA cap by RNA 2′-phosphotransferase Tpt1. Nucleic Acids Research, 2018, 46, 9617-9624.	6.5	33
45	Deinococcus radiodurans HD-Pnk, a Nucleic Acid End-Healing Enzyme, Abets Resistance to Killing by Ionizing Radiation and Mitomycin C. Journal of Bacteriology, 2018, 200, .	1.0	4
46	Two-step mechanism and step-arrest mutants of <i>Runella slithyformis</i> NAD ⁺ -dependent tRNA 2′-phosphotransferase Tpt1. Rna, 2018, 24, 1144-1157.	1.6	19
47	Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2592-2597.	3.3	15
48	Characterization of DNA Binding by the Isolated N-Terminal Domain of Vaccinia Virus DNA Topoisomerase IB. Biochemistry, 2017, 56, 3307-3317.	1.2	4
49	Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Science Immunology, 2017, 2, .	5.6	101
50	The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA $5\hat{a}\in^2$ Flaps and the Removal of $5\hat{a}\in^2$ Adenylylated Products of Aborted Nick Ligation. Journal of Bacteriology, 2017, 199, .	1.0	8
51	Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2′,3′-Phosphoesterase HD Domain and a C-Terminal 5′-OH Polynucleotide Kinase Domain. Journal of Bacteriology, 2017, 199, .	1.0	6
52	Deletion of the <i>rnl </i> gene encoding a nick-sealing RNA ligase sensitizes <i>Deinococcus radiodurans </i> to ionizing radiation. Nucleic Acids Research, 2017, 45, gkx038.	6.5	9
53	Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2. Rna, 2017, 23, 420-430.	1.6	9
54	Defining the DNA Binding Site Recognized by the Fission Yeast Zn ₂ Cys ₆ Transcription Factor Pho7 and Its Role in Phosphate Homeostasis. MBio, 2017, 8, .	1.8	23

#	Article	IF	CITATIONS
55	Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase. Nucleic Acids Research, 2017, 45, 12945-12953.	6.5	12
56	Division of labor among <i>Mycobacterium smegmatis </i> RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase. Nucleic Acids Research, 2017, 45, 1-14.	6.5	183
57	Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Research, 2017, 45, 762-774.	6.5	17
58	Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 <i>in vitro</i> and <i>in vivo</i> . Nucleic Acids Research, 2016, 44, 7714-7721.	6.5	15
59	Structure–function analysis and genetic interactions of the Luc7 subunit of the <i>Saccharomyces cerevisiae</i> U1 snRNP. Rna, 2016, 22, 1302-1310.	1.6	18
60	Structure–function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring. Rna, 2016, 22, 1320-1328.	1.6	9
61	Distinct Contributions of Enzymic Functional Groups to the 2′,3′-Cyclic Phosphodiesterase, 3′-Phosphate Guanylylation, and 3′-ppG/5′-OH Ligation Steps of the Escherichia coli RtcB Nucleic Acid Splicing Pathway. Journal of Bacteriology, 2016, 198, 1294-1304.	1.0	15
62	Characterization of the tRNA ligases of pathogenic fungi <i>Aspergillus fumigatus</i> and <i>Coccidioides immitis</i> Rna, 2016, 22, 1500-1509.	1.6	13
63	Mechanistic insights into the manganese-dependent phosphodiesterase activity of yeast Dbr1 with bis- <i>p</i> -nitrophenylphosphate and branched RNA substrates. Rna, 2016, 22, 1819-1827.	1.6	11
64	Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast. Nucleic Acids Research, 2016, 44, gkw603.	6.5	9
65	Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast. Rna, 2016, 22, 1011-1025.	1.6	47
66	Kinetic mechanism and fidelity of nick sealing by <i>Escherichia coli</i> NAD ⁺ -dependent DNA ligase (LigA). Nucleic Acids Research, 2016, 44, 2298-2309.	6.5	22
67	Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. MBio, 2016, 7, e00058-16.	1.8	16
68	Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858). Journal of Bacteriology, 2016, 198, 1521-1533.	1.0	8
69	Characterization of 3′-Phosphate RNA Ligase Paralogs RtcB1, RtcB2, and RtcB3 from Myxococcus xanthus Highlights DNA and RNA 5′-Phosphate Capping Activity of RtcB3. Journal of Bacteriology, 2015, 197, 3616-3624.	1.0	13
70	Characterization of a novel eukaryal nick-sealing RNA ligase from <i>Naegleria gruberi</i> . Rna, 2015, 21, 824-832.	1.6	17
71	Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1. Rna, 2015, 21, 1135-1146.	1.6	13
72	Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26. G3: Genes, Genomes, Genetics, 2015, 5, 1361-1370.	0.8	7

#	Article	IF	Citations
73	Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13868-13873.	3.3	24
74	Effects of DNA3′pp5′G capping on 3′ end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance. Nucleic Acids Research, 2015, 43, 3197-3207.	6.5	5
7 5	DNA3′pp5′G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition. Nucleic Acids Research, 2015, 43, 6075-6083.	6.5	3
76	Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification. Nucleic Acids Research, 2015, 43, gkv837.	6.5	21
77	Structural basis for recognition of intron branchpoint RNA by yeast Msl5 and selective effects of interfacial mutations on splicing of yeast pre-mRNAs. Rna, 2015, 21, 401-414.	1.6	20
78	RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria. Journal of Bacteriology, 2015, 197, 3121-3132.	1.0	16
79	Mycobacterium smegmatis HelY Is an RNA-Activated ATPase/dATPase and 3′-to-5′ Helicase That Unwinds 3′-Tailed RNA Duplexes and RNA:DNA Hybrids. Journal of Bacteriology, 2015, 197, 3057-3065.	1.0	10
80	Fission yeast RNA triphosphatase reads an Spt5 CTD code. Rna, 2015, 21, 113-123.	1.6	11
81	Structure–function analysis and genetic interactions of the Yhc1, SmD3, SmB, and Snp1 subunits of yeast U1 snRNP and genetic interactions of SmD3 with U2 snRNP subunit Lea1. Rna, 2015, 21, 1173-1186.	1.6	18
82	Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains. Journal of Bacteriology, 2015, 197, 2489-2498.	1.0	21
83	RNA capping: progress and prospects. Rna, 2015, 21, 735-737.	1.6	31
84	RNA polymerase II CTD phospho-sites Ser5 and Ser7 govern phosphate homeostasis in fission yeast. Rna, 2015, 21, 1770-1780.	1.6	32
85	Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4185-4190.	3.3	53
86	Structures of Bacterial Polynucleotide Kinase in a Michaelis Complex with Nucleoside Triphosphate (NTP)-Mg ²⁺ and 5′-OH RNA and a Mixed Substrate-Product Complex with NTP-Mg ²⁺ and a 5′-Phosphorylated Oligonucleotide. Journal of Bacteriology, 2014, 196, 4285-4292.	1.0	3
87	Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway. PLoS Pathogens, 2014, 10, e1003989.	2.1	148
88	Structure and mechanism of <i>E. coli</i> RNA 2′,3′-cyclic phosphodiesterase. Rna, 2014, 20, 1697-1705.	1.6	20
89	Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28. Nucleic Acids Research, 2014, 42, 12885-12898.	6.5	22
90	Effects of 3′-OH and 5′-PO 4 Base Mispairs and Damaged Base Lesions on the Fidelity of Nick Sealing by Deinococcus radiodurans RNA Ligase. Journal of Bacteriology, 2014, 196, 1704-1712.	1.0	14

#	Article	IF	Citations
91	Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Research, 2014, 42, 12722-12734.	6.5	35
92	Structures of bacterial polynucleotide kinase in a Michaelis complex with GTP*Mg2+ and 5'-OH oligonucleotide and a product complex with GDP*Mg2+ and 5'-PO4 oligonucleotide reveal a mechanism of general acid-base catalysis and the determinants of phosphoacceptor recognition. Nucleic Acids Research, 2014, 42, 1152-1161.	6.5	17
93	Impact of DNA3'pp5'G capping on repair reactions at DNA 3' ends. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11317-11322.	3.3	16
94	Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28. Nucleic Acids Research, 2014, 42, 4697-4711.	6.5	18
95	Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Research, 2014, 42, 11056-11070.	6.5	38
96	Crystal Structure of Vaccinia Virus mRNA Capping Enzyme Provides Insights into the Mechanism and Evolution of the Capping Apparatus. Structure, 2014, 22, 452-465.	1.6	41
97	Distinctive kinetics and substrate specificities of plant and fungal tRNA ligases. Rna, 2014, 20, 462-473.	1.6	18
98	How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes. Genes and Development, 2014, 28, 1323-1336.	2.7	40
99	Structure, Mechanism, and Specificity of a Eukaryal tRNA Restriction Enzyme Involved in Self-Nonself Discrimination. Cell Reports, 2014, 7, 339-347.	2.9	16
100	Rewriting the rules for end joining via enzymatic splicing of DNA 3'-PO4 and 5'-OH ends. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20437-20442.	3.3	36
101	Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3′-OH base mispairs and damaged base lesions. Rna, 2013, 19, 1840-1847.	1.6	14
102	Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase–phosphatase. Nucleic Acids Research, 2013, 41, 355-365.	6.5	57
103	Structural and Biochemical Analysis of the Phosphate Donor Specificity of the Polynucleotide Kinase Component of the Bacterial Pnkp•Hen1 RNA Repair System. Biochemistry, 2013, 52, 4734-4743.	1.2	10
104	Discrimination of RNA from DNA by Polynucleotide Phosphorylase. Biochemistry, 2013, 52, 6702-6711.	1.2	7
105	Chemical Mutagenesis of Vaccinia DNA Topoisomerase Lysine 167 Provides Insights to the Catalysis of DNA Transesterification. Biochemistry, 2013, 52, 984-991.	1.2	3
106	Distinctive Effects of Domain Deletions on the Manganese-Dependent DNA Polymerase and DNA Phosphorylase Activities of <i>Mycobacterium smegmatis</i> Polynucleotide Phosphorylase. Biochemistry, 2013, 52, 2967-2981.	1.2	10
107	A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Research, 2013, 41, 2284-2295.	6.5	34
108	Structure-function analysis of the $5\hat{a}\in^2$ end of yeast U1 snRNA highlights genetic interactions with the Msl $5\hat{a}\in^4$ Mud2 branchpoint-binding complex and other spliceosome assembly factors. Nucleic Acids Research, 2013, 41, 7485-7500.	6.5	14

#	Article	IF	CITATIONS
109	The PAF Complex and Prf1/Rtf1 Delineate Distinct Cdk9-Dependent Pathways Regulating Transcription Elongation in Fission Yeast. PLoS Genetics, 2013, 9, e1004029.	1.5	45
110	Structure and mechanism of the 2',3' phosphatase component of the bacterial Pnkp-Hen1 RNA repair system. Nucleic Acids Research, 2013, 41, 5864-5873.	6.5	26
111	A kinetic framework for tRNA ligase and enforcement of a $2\hat{a}\in^2$ -phosphate requirement for ligation highlights the design logic of an RNA repair machine. Rna, 2013, 19, 659-669.	1.6	32
112	2′-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in <i>Escherichia coli</i>) and other bacterial taxa. Rna, 2013, 19, 1355-1362.	1.6	32
113	Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3′-to-5′ DNA Translocase and Helicase That Prefers to Unwind 3′-Tailed RNA:DNA Hybrids. Journal of Biological Chemistry, 2013, 288, 14125-14134.	1.6	19
114	Structural insights to the metal specificity of an archaeal member of the LigD 3′-phosphoesterase DNA repair enzyme family. Nucleic Acids Research, 2012, 40, 828-836.	6.5	7
115	Box H/ACA snoRNAs are preferred substrates for the trimethylguanosine synthase in the divergent unicellular eukaryote <i>Trichomonas vaginalis</i> . Rna, 2012, 18, 1656-1665.	1.6	4
116	Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with $3\hat{a}\in^2$ to $5\hat{a}\in^2$ translocase and helicase activities. Nucleic Acids Research, 2012, 40, 7465-7475.	6.5	22
117	Structure and mechanism of the polynucleotide kinase component of the bacterial Pnkp-Hen1 RNA repair system. Rna, 2012, 18, 2277-2286.	1.6	18
118	Kinetic Analysis of DNA Strand Joining by Chlorella Virus DNA Ligase and the Role of Nucleotidyltransferase Motif VI in Ligase Adenylylation. Journal of Biological Chemistry, 2012, 287, 28609-28618.	1.6	13
119	RNA ligase RtcB splices 3′-phosphate and 5′-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′)pp(5′)G intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6072-6077.	3.3	94
120	Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair. Rna, 2012, 18, 145-154.	1.6	18
121	The adenylyltransferase domain of bacterial Pnkp defines a unique RNA ligase family. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2296-2301.	3.3	23
122	Mycobacterium smegmatis RqlH defines a novel clade of bacterial RecQ-like DNA helicases with ATP-dependent 3′–5′ translocase and duplex unwinding activities. Nucleic Acids Research, 2012, 40, 4604-4614.	6.5	11
123	Solution structure and DNA-binding properties of the phosphoesterase domain of DNA ligase D. Nucleic Acids Research, 2012, 40, 2076-2088.	6.5	7
124	A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair. Rna, 2012, 18, 1716-1724.	1.6	18
125	Genetic interactions of hypomorphic mutations in the m ⁷ G cap-binding pocket of yeast nuclear cap binding complex: An essential role for Cbc2 in meiosis via splicing of <i>MER3</i> pre-mRNA. Rna, 2012, 18, 1996-2011.	1.6	23
126	Structure–function analysis and genetic interactions of the yeast branchpoint binding protein Msl5. Nucleic Acids Research, 2012, 40, 4539-4552.	6.5	19

#	Article	IF	Citations
127	The sequential 2',3'-cyclic phosphodiesterase and 3'-phosphate/5'-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Nucleic Acids Research, 2012, 40, 8558-8567.	6.5	46
128	Punctuation and syntax of the RNA polymerase II CTD code in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18024-18029.	3.3	41
129	Characterization of <i>Mycobacterium smegmatis</i> PolD2 and PolD1 as RNA/DNA Polymerases Homologous to the POL Domain of Bacterial DNA Ligase D. Biochemistry, 2012, 51, 10147-10158.	1.2	22
130	Structure–function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC. Virology, 2012, 427, 144-150.	1.1	11
131	Deciphering the RNA Polymerase II CTD Code in Fission Yeast. Molecular Cell, 2011, 43, 311-318.	4.5	109
132	Mycobacteria exploit three genetically distinct DNA doubleâ€strand break repair pathways. Molecular Microbiology, 2011, 79, 316-330.	1.2	96
133	Sequence-specific 1H, 13C and 15N assignments of the phosphoesterase (PE) domain of Pseudomonas aeruginosa DNA ligase D (LigD). Biomolecular NMR Assignments, 2011, 5, 151-155.	0.4	2
134	An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre - mRNAs. Nucleic Acids Research, 2011, 39, 5633-5646.	6.5	32
135	Composition of yeast snRNPs and snoRNPs in the absence of trimethylguanosine caps reveals nuclear cap binding protein as a gained U1 component implicated in the cold-sensitivity of tgs1Î" cells. Nucleic Acids Research, 2011, 39, 6715-6728.	6.5	31
136	Novel Mechanism of RNA Repair by RtcB via Sequential 2′,3′-Cyclic Phosphodiesterase and 3′-Phosphate/5′-Hydroxyl Ligation Reactions. Journal of Biological Chemistry, 2011, 286, 43134-43143.	1.6	93
137	Determinants of Nam8-dependent splicing of meiotic pre-mRNAs. Nucleic Acids Research, 2011, 39, 3427-3445.	6.5	25
138	Structures of RNA 3'-phosphate cyclase bound to ATP reveal the mechanism of nucleotidyl transfer and metal-assisted catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21034-21039.	3.3	10
139	RtcB, a Novel RNA Ligase, Can Catalyze tRNA Splicing and HAC1 mRNA Splicing in Vivo. Journal of Biological Chemistry, 2011, 286, 30253-30257.	1.6	93
140	Defining the Mer1 and Nam8 meiotic splicing regulons by cDNA rescue. Rna, 2011, 17, 1648-1654.	1.6	7
141	RtcB Is the RNA Ligase Component of an Escherichia coli RNA Repair Operon. Journal of Biological Chemistry, 2011, 286, 7727-7731.	1.6	143
142	Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase. Journal of Biological Chemistry, 2011, 286, 22642-22652.	1.6	12
143	Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Research, 2011, 39, 687-700.	6.5	17
144	Substrate specificity and mutational analysis of <i>Kluyveromyces lactis</i> \hat{I}^3 -toxin, a eukaryal tRNA anticodon nuclease. Rna, 2011, 17, 1336-1343.	1.6	9

#	Article	IF	Citations
145	RNA 3′-Phosphate Cyclase (RtcA) Catalyzes Ligase-like Adenylylation of DNA and RNA 5′-Monophosphate Ends. Journal of Biological Chemistry, 2011, 286, 4117-4122.	1.6	27
146	Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily. Nucleic Acids Research, 2011, 39, 3310-3320.	6.5	9
147	Functional Dissection of the DNA Interface of the Nucleotidyltransferase Domain of Chlorella Virus DNA Ligase. Journal of Biological Chemistry, 2011, 286, 13314-13326.	1.6	10
148	Structure of the RNA 3′-Phosphate Cyclase-Adenylate Intermediate Illuminates Nucleotide Specificity and Covalent Nucleotidyl Transfer. Structure, 2010, 18, 449-457.	1.6	19
149	Double Strand Break Unwinding and Resection by the Mycobacterial Helicase-Nuclease AdnAB in the Presence of Single Strand DNA-binding Protein (SSB). Journal of Biological Chemistry, 2010, 285, 34319-34329.	1.6	29
150	Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: Proteins implicated in pre-mRNA splicing. Rna, 2010, 16, 1018-1031.	1.6	23
151	Separable Functions of the Fission Yeast Spt5 Carboxyl-Terminal Domain (CTD) in Capping Enzyme Binding and Transcription Elongation Overlap with Those of the RNA Polymerase II CTD. Molecular and Cellular Biology, 2010, 30, 2353-2364.	1.1	57
152	Bacterial Hen1 is a 3′ terminal RNA ribose 2′-O-methyltransferase component of a bacterial RNA repair cassette. Rna, 2010, 16, 316-323.	1.6	30
153	Structure of bacterial LigD 3′-phosphoesterase unveils a DNA repair superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12822-12827.	3.3	28
154	Mutational analysis of the $5\hat{a}\in^2$ -OH oligonucleotide phosphate acceptor site of T4 polynucleotide kinase. Nucleic Acids Research, 2010, 38, 1304-1311.	6.5	6
155	Characterization of the Mycobacterial AdnAB DNA Motor Provides Insights into the Evolution of Bacterial Motor-Nuclease Machines. Journal of Biological Chemistry, 2010, 285, 2632-2641.	1.6	29
156	Gap Filling Activities of Pseudomonas DNA Ligase D (LigD) Polymerase and Functional Interactions of LigD with the DNA End-binding Ku Protein. Journal of Biological Chemistry, 2010, 285, 4815-4825.	1.6	36
157	Solution NMR Studies of Chlorella Virus DNA Ligase-adenylate. Journal of Molecular Biology, 2010, 395, 291-308.	2.0	11
158	Characterization of a thermostable archaeal polynucleotide kinase homologous to human Clp1. Rna, 2009, 15, 923-931.	1.6	28
159	Characterization of the <i>Schizosaccharomyces pombe</i> Spt5-Spt4 complex. Rna, 2009, 15, 1241-1250.	1.6	16
160	Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA). Journal of Biological Chemistry, 2009, 284, 8486-8494.	1.6	8
161	DNA Ligases: Progress and Prospects. Journal of Biological Chemistry, 2009, 284, 17365-17369.	1.6	146
162	Structure-activity relationships in Kluyveromyces lactis Â-toxin, a eukaryal tRNA anticodon nuclease. Rna, 2009, 15, 1036-1044.	1.6	21

#	Article	IF	Citations
163	Characterization of a mimivirus RNA cap guanine-N2 methyltransferase. Rna, 2009, 15, 666-674.	1.6	20
164	Structure–activity relationships in human RNA 3′-phosphate cyclase. Rna, 2009, 15, 1865-1874.	1.6	16
165	AdnAB: a new DSB-resecting motor–nuclease from mycobacteria. Genes and Development, 2009, 23, 1423-1437.	2.7	82
166	Sequence-specific 1HN, 13C, and 15N backbone resonance assignments of the 34ÂkDa Paramecium bursaria Chlorella virus 1 (PBCV1) DNA ligase. Biomolecular NMR Assignments, 2009, 3, 77-80.	0.4	2
167	Mutational Analysis of Mycobacterium UvrD1 Identifies Functional Groups Required for ATP Hydrolysis, DNA Unwinding, and Chemomechanical Coupling. Biochemistry, 2009, 48, 4019-4030.	1.2	32
168	Mammalian $2\hat{a} \in ^2$, $3\hat{a} \in ^2$ cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. Rna, 2008, 14, 204-210.	1.6	45
169	Characterization of a Trifunctional Mimivirus mRNAÂCapping Enzyme and Crystal Structure of the RNA Triphosphatase Domain. Structure, 2008, 16, 501-512.	1.6	40
170	RNA Repair: An Antidote to Cytotoxic Eukaryal RNA Damage. Molecular Cell, 2008, 31, 278-286.	4.5	71
171	The Structure of Fcp1, an Essential RNA Polymerase II CTD Phosphatase. Molecular Cell, 2008, 32, 478-490.	4.5	76
172	Domain Requirements for DNA Unwinding by Mycobacterial UvrD2, an Essential DNA Helicase. Biochemistry, 2008, 47, 9355-9364.	1.2	46
173	Bacterial Nonhomologous End Joining Ligases Preferentially Seal Breaks with a 3′-OH Monoribonucleotide. Journal of Biological Chemistry, 2008, 283, 8331-8339.	1.6	49
174	A Phosphate-binding Histidine of Binuclear Metallophosphodiesterase Enzymes Is a Determinant of $2\hat{a}\in^2$, $3\hat{a}\in^2$ -Cyclic Nucleotide Phosphodiesterase Activity. Journal of Biological Chemistry, 2008, 283, 30942-30949.	1.6	60
175	Polyphosphatase Activity of CthTTM, a Bacterial Triphosphate Tunnel Metalloenzyme. Journal of Biological Chemistry, 2008, 283, 31047-31057.	1.6	15
176	Structure-function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase. Rna, 2008, 14, 696-705.	1.6	15
177	Genetic and Biochemical Analysis of Yeast and Human Cap Trimethylguanosine Synthase. Journal of Biological Chemistry, 2008, 283, 31706-31718.	1.6	65
178	Structure-guided Mutational Analysis of the OB, HhH, and BRCT Domains of Escherichia coli DNA Ligase. Journal of Biological Chemistry, 2008, 283, 23343-23352.	1.6	19
179	Chemical and Traditional Mutagenesis of Vaccinia DNA Topoisomerase Provides Insights to Cleavage Site Recognition and Transesterification Chemistry. Journal of Biological Chemistry, 2008, 283, 16093-16103.	1.6	16
180	Human RNA 5′-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. Rna, 2008, 14, 1737-1745.	1.6	57

#	Article	IF	CITATIONS
181	The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes and Development, 2008, 22, 512-527.	2.7	102
182	Mutational analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase reveals essential contributions of the N-terminal peptide that closes over the active site. Rna, 2008, 14, 2297-2304.	1.6	8
183	Dynamics of phosphodiester synthesis by DNA ligase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6894-6899.	3.3	16
184	Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe. Nucleic Acids Research, 2007, 35, 1411-1420.	6.5	29
185	Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage phosphatase. Nucleic Acids Research, 2007, 35, 7721-7732.	6.5	31
186	Sinefungin resistance of Saccharomyces cerevisiae arising from sam3 mutations that inactivate the AdoMet transporter or from increased expression of AdoMet synthase plus mRNA cap guanine-N7 methyltransferase. Nucleic Acids Research, 2007, 35, 6895-6903.	6.5	10
187	Characterization of Agrobacterium tumefaciens DNA ligases C and D. Nucleic Acids Research, 2007, 35, 3631-3645.	6.5	37
188	Mycobacterial Nonhomologous End Joining Mediates Mutagenic Repair of Chromosomal Double-Strand DNA Breaks. Journal of Bacteriology, 2007, 189, 5237-5246.	1.0	84
189	Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick. Nucleic Acids Research, 2007, 35, 839-849.	6.5	15
190	Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme. Nucleic Acids Research, 2007, 35, 3624-3630.	6.5	22
191	Mycobacterial UvrD1 Is a Ku-dependent DNA Helicase That Plays a Role in Multiple DNA Repair Events, Including Double-strand Break Repair. Journal of Biological Chemistry, 2007, 282, 15114-15125.	1.6	66
192	The C-terminal domain of T4 RNA ligase 1 confers specificity for tRNA repair. Rna, 2007, 13, 1235-1244.	1.6	26
193	Novel Triphosphate Phosphohydrolase Activity of Clostridium thermocellum TTM, a Member of the Triphosphate Tunnel Metalloenzyme Superfamily. Journal of Biological Chemistry, 2007, 282, 11941-11949.	1.6	28
194	Last Stop on the Road to Repair: Structure of E. coli DNA Ligase Bound to Nicked DNA-Adenylate. Molecular Cell, 2007, 26, 257-271.	4.5	81
195	Transcriptional Networking Cap-tures the 7SK RNA 5′-γ-Methyltransferase. Molecular Cell, 2007, 27, 517-519.	4.5	16
196	Bacterial DNA repair by non-homologous end joining. Nature Reviews Microbiology, 2007, 5, 852-861.	13.6	245
197	Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nature Structural and Molecular Biology, 2007, 14, 770-778.	3.6	74
198	Vaccinia topoisomerase mutants illuminate roles for Phe59, Gly73, Gln69 and Phe215. Virology, 2007, 359, 466-476.	1.1	6

#	Article	IF	CITATIONS
199	Structure–function analysis of the 3′ phosphatase component of T4 polynucleotide kinase/phosphatase. Virology, 2007, 366, 126-136.	1.1	18
200	RNA Ligase Structures Reveal the Basis for RNA Specificity and Conformational Changes that Drive Ligation Forward. Cell, 2006, 127, 71-84.	13.5	78
201	Genetic analysis of poxvirus mRNA cap methyltransferase: Suppression of conditional mutations in the stimulatory D12 subunit by second-site mutations in the catalytic D1 subunit. Virology, 2006, 352, 145-156.	1.1	14
202	Characterization of mimivirus NAD+-dependent DNA ligase. Virology, 2006, 353, 133-143.	1.1	28
203	Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase. Rna, 2006, 12, 73-82.	1.6	26
204	Structure-function analysis of the kinase-CPD domain of yeast tRNA ligase (Trl1) and requirements for complementation of tRNA splicing by a plant Trl1 homolog. Nucleic Acids Research, 2006, 34, 517-527.	6.5	137
205	Nonpolar Nucleobase Analogs Illuminate Requirements for Site-specific DNA Cleavage by Vaccinia Topoisomerase. Journal of Biological Chemistry, 2006, 281, 35914-35921.	1.6	9
206	Characterization of Mimivirus DNA Topoisomerase IB Suggests Horizontal Gene Transfer between Eukaryal Viruses and Bacteria. Journal of Virology, 2006, 80, 314-321.	1.5	41
207	Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1711-1716.	3.3	62
208	Cyclin-Dependent Kinase 9 (Cdk9) of Fission Yeast Is Activated by the CDK-Activating Kinase Csk1, Overlaps Functionally with the TFIIH-Associated Kinase Mcs6, and Associates with the mRNA Cap Methyltransferase Pcm1 In Vivo. Molecular and Cellular Biology, 2006, 26, 777-788.	1.1	51
209	Substrate Specificity and Structure-Function Analysis of the 3′-Phosphoesterase Component of the Bacterial NHEJ Protein, DNA Ligase D. Journal of Biological Chemistry, 2006, 281, 13873-13881.	1.6	29
210	Mutational Analysis of Encephalitozoon cuniculi mRNA Cap (Guanine-N7) Methyltransferase, Structure of the Enzyme Bound to Sinefungin, and Evidence That Cap Methyltransferase Is the Target of Sinefungin's Antifungal Activity. Journal of Biological Chemistry, 2006, 281, 35904-35913.	1.6	32
211	Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins. Rna, 2006, 12, 1468-1474.	1.6	32
212	Distinct Enzymic Functional Groups Are Required for the Phosphomonoesterase and Phosphodiesterase Activities of Clostridium thermocellum Polynucleotide Kinase/Phosphatase. Journal of Biological Chemistry, 2006, 281, 19251-19259.	1.6	31
213	Structure-guided mutational analysis of T4 RNA ligase 1. Rna, 2006, 12, 2126-2134.	1.6	20
214	Crystal Structure and Nonhomologous End-joining Function of the Ligase Component of Mycobacterium DNA Ligase D. Journal of Biological Chemistry, 2006, 281, 13412-13423.	1.6	61
215	Nucleotide Misincorporation, 3′-Mismatch Extension, and Responses to Abasic Sites and DNA Adducts by the Polymerase Component of Bacterial DNA Ligase D. Journal of Biological Chemistry, 2006, 281, 25026-25040.	1.6	30
216	Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA. Journal of Biological Chemistry, 2006, 281, 6030-6037.	1.6	24

#	Article	IF	Citations
217	Poxvirus mRNA Cap Methyltransferase. Journal of Biological Chemistry, 2006, 281, 18953-18960.	1.6	18
218	Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nature Structural and Molecular Biology, 2005, 12, 304-312.	3.6	190
219	Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 2005, 434, 671-674.	13.7	287
220	Mechanistic Plasticity of DNA Topoisomerase IB: Phosphate Electrostatics Dictate the Need for a Catalytic Arginine. Structure, 2005, 13, 513-520.	1.6	32
221	Structure-function analysis of yeast tRNA ligase. Rna, 2005, 11, 966-975.	1.6	55
222	Characterization of a Thermophilic ATP-Dependent DNA Ligase from the Euryarchaeon Pyrococcus horikoshii. Journal of Bacteriology, 2005, 187, 6902-6908.	1.0	36
223	Structure-function analysis of the yeast NAD+-dependent tRNA 2'-phosphotransferase Tpt1. Rna, 2005, 11, 107-113.	1.6	32
224	Essential Constituents of the 3′-Phosphoesterase Domain of Bacterial DNA Ligase D, a Nonhomologous End-joining Enzyme. Journal of Biological Chemistry, 2005, 280, 33707-33715.	1.6	32
225	Novel 3′-Ribonuclease and 3′-Phosphatase Activities of the Bacterial Non-homologous End-joining Protein, DNA Ligase D. Journal of Biological Chemistry, 2005, 280, 25973-25981.	1.6	54
226	Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli NAD+-dependent DNA Ligase (LigA). Journal of Biological Chemistry, 2005, 280, 12137-12144.	1.6	20
227	Yeast-like mRNA Capping Apparatus in Giardia lamblia. Journal of Biological Chemistry, 2005, 280, 12077-12086.	1.6	31
228	Encephalitozoon cuniculi mRNA Cap (Guanine N-7) Methyltransferase. Journal of Biological Chemistry, 2005, 280, 20404-20412.	1.6	36
229	Specificity and Mechanism of RNA Cap Guanine-N2 Methyltransferase (Tgs1). Journal of Biological Chemistry, 2005, 280, 4021-4024.	1.6	40
230	Crystal Structure of Baculovirus RNA Triphosphatase Complexed with Phosphate. Journal of Biological Chemistry, 2005, 280, 17848-17856.	1.6	23
231	Dual Mechanisms whereby a Broken RNA End Assists the Catalysis of Its Repair by T4 RNA Ligase 2. Journal of Biological Chemistry, 2005, 280, 23484-23489.	1.6	22
232	An end-healing enzyme from Clostridium thermocellum with 5' kinase, 2',3' phosphatase, and adenylyltransferase activities. Rna, 2005, 11, 1271-1280.	1.6	42
233	A Primer-dependent Polymerase Function of Pseudomonas aeruginosa ATP-dependent DNA Ligase (LigD). Journal of Biological Chemistry, 2005, 280, 418-427.	1.6	58
234	Structure-function analysis of yeast RNA debranching enzyme (Dbr1), a manganese-dependent phosphodiesterase. Nucleic Acids Research, 2005, 33, 6349-6360.	6.5	57

#	Article	IF	Citations
235	An RNA Ligase from Deinococcus radiodurans. Journal of Biological Chemistry, 2004, 279, 50654-50661.	1.6	32
236	Characterization of a Baculovirus Enzyme with RNA Ligase, Polynucleotide 5′-Kinase, and Polynucleotide 3′-Phosphatase Activities. Journal of Biological Chemistry, 2004, 279, 18220-18231.	1.6	38
237	RNA Substrate Specificity and Structure-guided Mutational Analysis of Bacteriophage T4 RNA Ligase 2. Journal of Biological Chemistry, 2004, 279, 31337-31347.	1.6	76
238	Portability and fidelity of RNA-repair systems. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2788-2793.	3.3	65
239	Individual Nucleotide Bases, Not Base Pairs, Are Critical for Triggering Site-specific DNA Cleavage by Vaccinia Topoisomerase. Journal of Biological Chemistry, 2004, 279, 39718-39726.	1.6	17
240	Schizosaccharomyces pombe Carboxyl-terminal Domain (CTD) Phosphatase Fcp1. Journal of Biological Chemistry, 2004, 279, 10892-10900.	1.6	29
241	Biochemical and Genetic Analysis of the Four DNA Ligases of Mycobacteria. Journal of Biological Chemistry, 2004, 279, 20594-20606.	1.6	127
242	Characterization of Polynucleotide Kinase/Phosphatase Enzymes from Mycobacteriophages Omega and Cjw1 and Vibriophage KVP40. Journal of Biological Chemistry, 2004, 279, 26358-26369.	1.6	24
243	Remote Phosphate Contacts Trigger Assembly of the Active Site of DNA Topoisomerase IB. Structure, 2004, 12, 31-40.	1.6	33
244	Structure and Mechanism of RNA Ligase. Structure, 2004, 12, 327-339.	1.6	125
245	The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Current Opinion in Structural Biology, 2004, 14, 757-764.	2.6	167
246	How an RNA Ligase Discriminates RNA versus DNA Damage. Molecular Cell, 2004, 16, 211-221.	4.5	76
247	Structure and Mechanism of mRNA Cap (Guanine-N7) Methyltransferase. Molecular Cell, 2004, 13, 77-89.	4.5	138
248	A Function of Yeast mRNA Cap Methyltransferase, Abd1, in Transcription by RNA Polymerase II. Molecular Cell, 2004, 13, 377-387.	4.5	61
249	Mapping the active site of vaccinia virus RNA triphosphatase. Virology, 2003, 309, 125-134.	1.1	20
250	Structure of an mRNA Capping Enzyme Bound to the Phosphorylated Carboxy-Terminal Domain of RNA Polymerase II. Molecular Cell, 2003, 11, 1549-1561.	4.5	192
251	Guarding the Genome. Molecular Cell, 2003, 12, 199-208.	4.5	39
252	Mutational Analysis of the Guanylyltransferase Component of Mammalian mRNA Capping Enzyme. Biochemistry, 2003, 42, 8240-8249.	1.2	36

#	Article	IF	Citations
253	Homodimeric Quaternary Structure Is Required for the in Vivo Function and Thermal Stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA Triphosphatases. Journal of Biological Chemistry, 2003, 278, 30487-30496.	1.6	16
254	Genetic and Biochemical Analysis of the Functional Domains of Yeast tRNA Ligase. Journal of Biological Chemistry, 2003, 278, 43928-43938.	1.6	79
255	Structure-Function Analysis of T4 RNA Ligase 2. Journal of Biological Chemistry, 2003, 278, 17601-17608.	1.6	62
256	Mutational Analysis of Bacteriophage T4 RNA Ligase 1. Journal of Biological Chemistry, 2003, 278, 29454-29462.	1.6	47
257	Site-specific DNA Transesterification by Vaccinia Topoisomerase. Journal of Biological Chemistry, 2003, 278, 42170-42177.	1.6	12
258	Benzo[a]pyrene-dG Adduct Interference Illuminates the Interface of Vaccinia Topoisomerase with the DNA Minor Groove. Journal of Biological Chemistry, 2003, 278, 9905-9911.	1.6	18
259	Mapping the triphosphatase active site of baculovirus mRNA capping enzyme LEF4 and evidence for a two-metal mechanism. Nucleic Acids Research, 2003, 31, 1455-1463.	6.5	21
260	Analysis of the DNA joining repertoire of Chlorella virus DNA ligase and a new crystal structure of the ligase-adenylate intermediate. Nucleic Acids Research, 2003, 31, 5090-5100.	6.5	31
261	Yeast-Based Genetic System for Functional Analysis of Poxvirus mRNA Cap Methyltransferase. Journal of Virology, 2003, 77, 7300-7307.	1.5	24
262	Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 Protein Kinase. Journal of Biological Chemistry, 2003, 278, 43346-43356.	1.6	61
263	Structure-Function Analysis of Trypanosoma brucei RNA Triphosphatase and Evidence for a Two-metal Mechanism. Journal of Biological Chemistry, 2003, 278, 50843-50852.	1.6	25
264	Defining the Active Site of Schizosaccharomyces pombeC-terminal Domain Phosphatase Fcp1. Journal of Biological Chemistry, 2003, 278, 13627-13632.	1.6	22
265	Conserved Residues in Domain Ia Are Required for the Reaction of Escherichia coli DNA Ligase with NAD+. Journal of Biological Chemistry, 2002, 277, 9695-9700.	1.6	50
266	Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12709-12714.	3.3	145
267	Chlorella Virus RNA Triphosphatase. Journal of Biological Chemistry, 2002, 277, 15317-15324.	1.6	35
268	Proton Relay Mechanism of General Acid Catalysis by DNA Topoisomerase IB. Journal of Biological Chemistry, 2002, 277, 5711-5714.	1.6	62
269	Characterization of the mRNA Capping Apparatus of the Microsporidian Parasite Encephalitozoon cuniculi. Journal of Biological Chemistry, 2002, 277, 96-103.	1.6	39
270	Mutational analysis defines the 5'-kinase and 3'-phosphatase active sites of T4 polynucleotide kinase. Nucleic Acids Research, 2002, 30, 1073-1080.	6.5	64

#	Article	IF	Citations
271	Interactions between Fission Yeast mRNA Capping Enzymes and Elongation Factor Spt5. Journal of Biological Chemistry, 2002, 277, 19639-19648.	1.6	122
272	A poxvirus-like type IB topoisomerase family in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1853-1858.	3.3	75
273	Role of Nucleotidyl Transferase Motif V in Strand Joining byChlorella Virus DNA Ligase. Journal of Biological Chemistry, 2002, 277, 9661-9667.	1.6	28
274	Role of nucleotidyltransferase motifs I, III and IV in the catalysis of phosphodiester bond formation by Chlorella virus DNA ligase. Nucleic Acids Research, 2002, 30, 903-911.	6.5	40
275	Tat Stimulates Cotranscriptional Capping of HIV mRNA. Molecular Cell, 2002, 10, 585-597.	4.5	125
276	What messenger RNA capping tells us about eukaryotic evolution. Nature Reviews Molecular Cell Biology, 2002, 3, 619-625.	16.1	296
277	Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO Journal, 2002, 21, 3873-3880.	3.5	162
278	Effects of Alanine Cluster Mutations in the D12 Subunit of Vaccinia Virus mRNA (Guanine-N7) Methyltransferase. Virology, 2001, 287, 40-48.	1.1	7
279	RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans. BMC Microbiology, 2001, 1, 29.	1.3	16
280	HIV-1 Tat Protein Interacts with Mammalian Capping Enzyme and Stimulates Capping of TAR RNA. Journal of Biological Chemistry, 2001, 276, 12959-12966.	1.6	55
281	Importance of Homodimerization for the in Vivo Function of Yeast RNA Triphosphatase. Journal of Biological Chemistry, 2001, 276, 14996-15002.	1.6	12
282	Trypanosoma brucei RNA Triphosphatase. Journal of Biological Chemistry, 2001, 276, 46182-46186.	1.6	27
283	RNA Triphosphatase Component of the mRNA Capping Apparatus of Paramecium bursaria Chlorella Virus 1. Journal of Virology, 2001, 75, 1744-1750.	1.5	29
284	Characterization of the mRNA Capping Apparatus of Candida albicans. Journal of Biological Chemistry, 2001, 276, 1857-1864.	1.6	32
285	Mutational Analysis of Baculovirus Capping Enzyme Lef4 Delineates an Autonomous Triphosphatase Domain and Structural Determinants of Divalent Cation Specificity. Journal of Biological Chemistry, 2001, 276, 45522-45529.	1.6	21
286	Domain Structure and Mutational Analysis of T4 Polynucleotide Kinase. Journal of Biological Chemistry, 2001, 276, 26868-26874.	1.6	128
287	An Essential Function of Saccharomyces cerevisiae RNA Triphosphatase Cet1 Is to Stabilize RNA Guanylyltransferase Ceg1 against Thermal Inactivation. Journal of Biological Chemistry, 2001, 276, 36116-36124.	1.6	16
288	The Length, Phosphorylation State, and Primary Structure of the RNA Polymerase II Carboxyl-terminal Domain Dictate Interactions with mRNA Capping Enzymes. Journal of Biological Chemistry, 2001, 276, 28075-28082.	1.6	64

#	Article	IF	Citations
289	Effect of 2′-5′ Phosphodiesters on DNA Transesterification by Vaccinia Topoisomerase. Journal of Biological Chemistry, 2001, 276, 20907-20912.	1.6	9
290	Vaccinia Topoisomerase Mutants Illuminate Conformational Changes during Closure of the Protein Clamp and Assembly of a Functional Active Site. Journal of Biological Chemistry, 2001, 276, 36091-36099.	1.6	8
291	Functional Groups Required for the Stability of Yeast RNA Triphosphatase in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 30514-30520.	1.6	10
292	Structure-Function Analysis of the Active Site Tunnel of Yeast RNA Triphosphatase. Journal of Biological Chemistry, 2001, 276, 17261-17266.	1.6	42
293	NAD+-dependent DNA Ligase Encoded by a Eukaryotic Virus. Journal of Biological Chemistry, 2001, 276, 36100-36109.	1.6	57
294	The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature, 2000, 403, 447-451.	13.7	209
295	DNA strand transfer catalyzed by vaccinia topoisomerase: ligation of DNAs containing a 3' mononucleotide overhang. Nucleic Acids Research, 2000, 28, 1893-1898.	6.5	5
296	A Yeast-Based Genetic System for Functional Analysis of Viral mRNA Capping Enzymes. Journal of Virology, 2000, 74, 5486-5494.	1.5	28
297	Recombinogenic Flap Ligation Pathway for Intrinsic Repair of Topoisomerase IB-Induced Double-Strand Breaks. Molecular and Cellular Biology, 2000, 20, 8059-8068.	1.1	24
298	Peptide inhibitors of DNA cleavage by tyrosine recombinases and topoisomerases. Journal of Molecular Biology, 2000, 299, 1203-1216.	2.0	39
299	Crystal Structure of Eukaryotic DNA Ligase–Adenylate Illuminates the Mechanism of Nick Sensing and Strand Joining. Molecular Cell, 2000, 6, 1183-1193.	4.5	149
300	Catalytic Mechanism of DNA Topoisomerase IB. Molecular Cell, 2000, 5, 1035-1041.	4.5	155
301	DNA Strand Transfer Catalyzed by Vaccinia Topoisomerase: Peroxidolysis and Hydroxylaminolysis of the Covalent Proteinâ^'DNA Intermediateâ€. Biochemistry, 2000, 39, 6422-6432.	1.2	17
302	Stereochemical Outcome and Kinetic Effects of Rp- and Sp-Phosphorothioate Substitutions at the Cleavage Site of Vaccinia Type I DNA Topoisomeraseâ€. Biochemistry, 2000, 39, 5561-5572.	1.2	63
303	Structure, mechanism, and evolution of the mRNA capping apparatus. Progress in Molecular Biology and Translational Science, 2000, 66, 1-40.	1.9	252
304	Structure-Function Analysis of Yeast mRNA Cap Methyltransferase and High-Copy Suppression of Conditional Mutants by AdoMet Synthase and the Ubiquitin Conjugating Enzyme Cdc34p. Genetics, 2000, 155, 1561-1576.	1.2	49
305	An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase. Nucleic Acids Research, 1999, 27, 4671-4678.	6.5	32
306	Mutational Analyses of Yeast RNA Triphosphatases Highlight a Common Mechanism of Metal-dependent NTP Hydrolysis and a Means of Targeting Enzymes to Pre-mRNAs in Vivo by Fusion to the Guanylyltransferase Component of the Capping Apparatus. Journal of Biological Chemistry, 1999, 274, 28865-28874.	1.6	44

#	Article	IF	Citations
307	Characterization of Human, Schizosaccharomyces pombe, and Candida albicans mRNA Cap Methyltransferases and Complete Replacement of the Yeast Capping Apparatus by Mammalian Enzymes. Journal of Biological Chemistry, 1999, 274, 16553-16562.	1.6	73
308	Footprinting of Chlorella Virus DNA Ligase Bound at a Nick in Duplex DNA. Journal of Biological Chemistry, 1999, 274, 14032-14039.	1.6	57
309	A Conserved Domain of Yeast RNA Triphosphatase Flanking the Catalytic Core Regulates Self-association and Interaction with the Guanylyltransferase Component of the mRNA Capping Apparatus. Journal of Biological Chemistry, 1999, 274, 22668-22678.	1.6	41
310	Melanoplus sanguinipes Entomopoxvirus DNA Topoisomerase: Site-Specific DNA Transesterification and Effects of 5′-Bridging Phosphorothiolates. Virology, 1999, 264, 441-451.	1.1	18
311	Distinct Roles for CTD Ser-2 and Ser-5 Phosphorylation in the Recruitment and Allosteric Activation of Mammalian mRNA Capping Enzyme. Molecular Cell, 1999, 3, 405-411.	4.5	297
312	Structure and Mechanism of Yeast RNA Triphosphatase. Cell, 1999, 99, 533-543.	13.5	140
313	Site-Specific DNA Transesterification by Vaccinia Topoisomerase: Role of Specific Phosphates and Nucleosidesâ€. Biochemistry, 1999, 38, 16599-16612.	1.2	21
314	Mutational Analysis of Vaccinia Virus Nucleoside Triphosphate Phosphohydrolase I, a DNA-Dependent ATPase of the DExH Box Family. Journal of Virology, 1999, 73, 1302-1308.	1.5	16
315	Vaccinia virus DNA topoisomerase: a model eukaryotic type IB enzyme. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1400, 321-337.	2.4	86
316	Polynucleotide Ligase Activity of Eukaryotic Topoisomerase I. Molecular Cell, 1998, 1, 741-748.	4.5	23
317	Conservation of Structure and Mechanism between Eukaryotic Topoisomerase I and Site-Specific Recombinases. Cell, 1998, 92, 841-850.	13.5	235
318	Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Nucleic Acids Research, 1998, 26, 4618-4625.	6.5	85
319	Yeast and Viral RNA $5\hat{a}\in^2$ Triphosphatases Comprise a New Nucleoside Triphosphatase Family. Journal of Biological Chemistry, 1998, 273, 34151-34156.	1.6	77
320	A Catalytic Domain of Eukaryotic DNA Topoisomerase I. Journal of Biological Chemistry, 1998, 273, 11589-11595.	1.6	27
321	Specificity and fidelity of strand joining by Chlorella virus DNA ligase. Nucleic Acids Research, 1998, 26, 3536-3541.	6.5	69
322	Genetic, Physical, and Functional Interactions between the Triphosphatase and Guanylyltransferase Components of the Yeast mRNA Capping Apparatus. Molecular and Cellular Biology, 1998, 18, 5189-5198.	1.1	70
323	RNA 5′-Triphosphatase, Nucleoside Triphosphatase, and Guanylyltransferase Activities of Baculovirus LEF-4 Protein. Journal of Virology, 1998, 72, 10020-10028.	1.5	70
324	The Nucleoside Triphosphatase and Helicase Activities of Vaccinia Virus NPH-II Are Essential for Virus Replication. Journal of Virology, 1998, 72, 4729-4736.	1.5	55

#	Article	IF	Citations
325	Histidine 265 Is Important for Covalent Catalysis by Vaccinia Topoisomerase and Is Conserved in All Eukaryotic Type I Enzymes. Journal of Biological Chemistry, 1997, 272, 3891-3896.	1.6	49
326	Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167. Nucleic Acids Research, 1997, 25, 3001-3008.	6.5	63
327	Structure-Function Analysis of the mRNA Cap Methyltransferase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 14683-14689.	1.6	55
328	Mutational Analysis of 39 Residues of Vaccinia DNA Topoisomerase Identifies Lys-220, Arg-223, and Asn-228 as Important for Covalent Catalysis. Journal of Biological Chemistry, 1997, 272, 8263-8269.	1.6	50
329	Mutational Analysis of 26 Residues of Vaccinia DNA Topoisomerase Identifies Ser-204 as Important for DNA Binding and Cleavageâ€. Biochemistry, 1997, 36, 7944-7950.	1.2	11
330	Deletions at the Carboxyl Terminus of Vaccinia DNA Topoisomerase Affect DNA Binding and Enhance Distributivity in DNA Relaxation. Biochemistry, 1997, 36, 3909-3916.	1.2	6
331	Ligation of RNA-Containing Duplexes by Vaccinia DNA Ligase. Biochemistry, 1997, 36, 9073-9079.	1.2	29
332	Elongation Properties of Vaccinia Virus RNA Polymerase: Pausing, Slippage, 3†End Addition, and Termination Site Choiceâ€. Biochemistry, 1997, 36, 15892-15899.	1.2	14
333	Site-Specific Ribonuclease Activity of Eukaryotic DNA Topoisomerase I. Molecular Cell, 1997, 1, 89-97.	4.5	147
334	X-Ray Crystallography Reveals a Large Conformational Change during Guanyl Transfer by mRNA Capping Enzymes. Cell, 1997, 89, 545-553.	13.5	260
335	Characterization of a DNA Topoisomerase Encoded byAmsacta mooreiEntomopoxvirus. Virology, 1997, 230, 197-206.	1.1	21
336	Vaccinia Virus mRNA (Guanine-7-)Methyltransferase: Mutational Effects on Cap Methylation and AdoHcy-Dependent Photo-Cross-Linking of the Cap to the Methyl Acceptor Siteâ€. Biochemistry, 1996, 35, 6900-6910.	1.2	32
337	Mutations Within a Conserved Region of Vaccinia Topoisomerase Affect the DNA Cleavage-Religation Equilibrium. Journal of Molecular Biology, 1996, 263, 181-195.	2.0	26
338	Factor-dependent Release of Nascent RNA by Ternary Complexes of Vaccinia RNA Polymerase. Journal of Biological Chemistry, 1996, 271, 19556-19562.	1.6	30
339	An ATPase Component of the Transcription Elongation Complex Is Required for Factor-dependent Transcription Termination by Vaccinia RNA Polymerase. Journal of Biological Chemistry, 1996, 271, 29386-29392.	1.6	24
340	RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Molecular Microbiology, 1995, 17, 405-420.	1.2	227
341	Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry, 1995, 34, 16138-16147.	1.2	106
342	Mutational Analysis of Vaccinia DNA Ligase Defines Residues Essential for Covalent Catalysis. Virology, 1995, 211, 73-83.	1.1	58

#	Article	IF	CITATION
343	Proteolytic Footprinting of Vaccinia Topoisomerase Bound to DNA. Journal of Biological Chemistry, 1995, 270, 11636-11645.	1.6	44
344	Requirements for noncovalent binding of vaccinia topoisomerase I to duplex DNA. Nucleic Acids Research, 1994, 22, 5360-5365.	6.5	37
345	Vaccinia DNA Topoisomerase I: Kinetic Evidence for General Acid-Base Catalysis and a Conformational Step. Biochemistry, 1994, 33, 15449-15458.	1.2	47
346	Vaccinia DNA topoisomerase I: Single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry, 1994, 33, 327-339.	1.2	107