M H Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1667106/publications.pdf Version: 2024-02-01

MHCOST

#	Article	IF	CITATIONS
1	Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 2005, 5, 151-169.	6.3	587
2	Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: A weighted indices approach. Aquatic Toxicology, 2009, 92, 202-212.	4.0	144
3	Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecology, 2013, 13, 34.	3.0	130
4	Development of histopathological indices in a commercial marine bivalve (Ruditapes decussatus) to determine environmental quality. Aquatic Toxicology, 2013, 126, 442-454.	4.0	113
5	Age-related changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in whole body Gammarus locusta (Crustacea: Amphipoda). Journal of Experimental Marine Biology and Ecology, 2003, 289, 83-101.	1.5	112
6	Genotoxicity assessment in fish peripheral blood: a method for a more efficient analysis of micronuclei. Journal of Fish Biology, 2007, 71, 148-151.	1.6	93
7	Effects of temperature and salinity on life history of the marine amphipod Gammarus locusta. Implications for ecotoxicological testing. Ecotoxicology, 2002, 11, 61-73.	2.4	91
8	Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): Effects of metallic and organic contaminants. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 654, 29-37.	1.7	71
9	Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies. Environmental Research, 2011, 111, 25-36.	7.5	70
10	Estuarine ecological risk based on hepatic histopathological indices from laboratory and in situ tested fish. Marine Pollution Bulletin, 2011, 62, 55-65.	5.0	67
11	Life history of the amphipod Gammarus locusta in the Sado estuary (Portugal). Acta Oecologica, 1999, 20, 305-314.	1.1	66
12	DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities. Scientific Reports, 2017, 7, 15618.	3.3	65
13	Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: I. Biochemical endpoints. Marine Environmental Research, 2005, 60, 69-91.	2.5	64
14	Comparative DNA damage and oxidative effects of carcinogenic and non-carcinogenic sediment-bound PAHs in the gills of a bivalve. Aquatic Toxicology, 2013, 142-143, 85-95.	4.0	62
15	Acute Marine Sediment Toxicity: A Potential New Test with the AmphipodGammarus locusta. Ecotoxicology and Environmental Safety, 1998, 40, 81-87.	6.0	58
16	Starting a <scp>DNA</scp> barcode reference library for shallow water polychaetes from the southern European Atlantic coast. Molecular Ecology Resources, 2016, 16, 298-313.	4.8	58
17	Hypocholesterolaemic pharmaceutical simvastatin disrupts reproduction and population growth of the amphipod Gammarus locusta at the ng/L range. Aquatic Toxicology, 2014, 155, 337-347.	4.0	54
18	Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod gammarus locusta. Marine Environmental Research, 2002, 54, 357-360.	2.5	52

M H Costa

#	Article	IF	CITATIONS
19	Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: II. Organism and population-level endpoints. Marine Environmental Research, 2005, 60, 93-110.	2.5	52
20	Impact of remobilized contaminants in Mytilus edulis during dredging operations in a harbour area: Bioaccumulation and biomarker responses. Ecotoxicology and Environmental Safety, 2012, 85, 96-103.	6.0	49
21	Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene. Environmental Pollution, 2010, 158, 3338-3346.	7.5	48
22	Studies on biomarkers of copper exposure and toxicity in the marine amphipodGammarus locusta(Crustacea): I. Induction of metallothionein and lipid peroxidation. Biomarkers, 2002, 7, 422-437.	1.9	47
23	Ecological risk assessment of sediment management areas: application to Sado Estuary, Portugal. Ecotoxicology, 2009, 18, 1165-1175.	2.4	42
24	Can the integration of multiple biomarkers and sediment geochemistry aid solving the complexity of sediment risk assessment? A case study with a benthic fish. Environmental Pollution, 2012, 161, 107-120.	7.5	41
25	Adaptive-participative sustainability indicators in marine protected areas: Design and communication. Ocean and Coastal Management, 2013, 72, 36-45.	4.4	41
26	Macrozoobenthic community structure in two Portuguese estuaries: Relationship with organic enrichment and nutrient gradients. Acta Oecologica, 1999, 20, 363-376.	1.1	34
27	Multi-organ histological observations on juvenile Senegalese soles exposed to low concentrations of waterborne cadmium. Fish Physiology and Biochemistry, 2013, 39, 143-158.	2.3	34
28	Contrasting morphological and DNA barcode-suggested species boundaries among shallow-water amphipod fauna from the southern European Atlantic coast. Genome, 2017, 60, 147-157.	2.0	34
29	Biomarkers: a strategic tool in the assessment of environmental quality of coastal waters. Hydrobiologia, 2007, 587, 79-87.	2.0	33
30	Endosulfan-Induced Genotoxicity Detected in the Gilthead Seabream, Sparus aurata L., by Means of Flow Cytometry and Micronuclei Assays. Bulletin of Environmental Contamination and Toxicology, 2006, 76, 242-248.	2.7	31
31	Nereis diversicolor effect on the stability of cohesive intertidal sediments. Aquatic Ecology, 2006, 40, 567-579.	1.5	31
32	Biochemical endpoints on juvenile Solea senegalensis exposed to estuarine sediments: the effect of contaminant mixtures on metallothionein and CYP1A induction. Ecotoxicology, 2009, 18, 988-1000.	2.4	31
33	Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments. Ecotoxicology and Environmental Safety, 2008, 71, 117-124.	6.0	29
34	With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast. Scientific Reports, 2016, 6, 20226.	3.3	28
35	Delineation of Estuarine Management Areas Using Multivariate Geostatistics:Â The Case of Sado Estuary. Environmental Science & Technology, 2003, 37, 4052-4059.	10.0	27
36	Benthic biotope index for classifying habitats in the sado estuary: Portugal. Marine Environmental Research, 2005, 60, 570-593.	2.5	27

М Н Соѕта

#	Article	IF	CITATIONS
37	Microstructural and histochemical advances on the digestive gland of the common cuttlefish, Sepia officinalis L Zoomorphology, 2014, 133, 59-69.	0.8	27
38	Histopathological findings on <i>Carassius auratus</i> hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations. Journal of Applied Toxicology, 2014, 34, 1293-1302.	2.8	25
39	Effects of sediment geochemical properties on the toxicity of copper-spiked sediments to the marine amphipod Gammarus locusta. Science of the Total Environment, 2000, 247, 99-106.	8.0	24
40	A description of chloride cell and kidney tubule alterations in the flatfish Solea senegalensis exposed to moderately contaminated sediments from the Sado estuary (Portugal). Journal of Sea Research, 2010, 64, 465-472.	1.6	24
41	Effects of carcinogenic versus non-carcinogenic AHR-active PAHs and their mixtures: Lessons from ecological relevance. Environmental Research, 2015, 138, 101-111.	7.5	23
42	Ecotoxicological Heterogeneity in Transitional Coastal Habitats Assessed Through the Integration of Biomarkers and Sediment-Contamination Profiles: A Case Study Using a Commercial Clam. Archives of Environmental Contamination and Toxicology, 2013, 64, 97-109.	4.1	22
43	Development and application of a novel histological multichrome technique for clam histopathology. Journal of Invertebrate Pathology, 2012, 110, 411-414.	3.2	21
44	Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line. Science of the Total Environment, 2014, 478, 25-35.	8.0	21
45	Toxicokinetics of Waterborne Trivalent Arsenic in the Freshwater Bivalve Corbicula fluminea. Archives of Environmental Contamination and Toxicology, 2009, 57, 338-347.	4.1	20
46	Evaluation of the potential of the common cockle (Cerastoderma edule L.) for the ecological risk assessment of estuarine sediments: bioaccumulation and biomarkers. Ecotoxicology, 2010, 19, 1496-1512.	2.4	19
47	DNA damage and metal accumulation in four tissues of feral Octopus vulgaris from two coastal areas in Portugal. Ecotoxicology and Environmental Safety, 2010, 73, 1543-1547.	6.0	19
48	Macrobenthic communities of saltpans from the Sado estuary (Portugal). Acta Oecologica, 1999, 20, 327-332.	1.1	18
49	Metallothionein responses in the Asiatic clam (Corbicula fluminea) after exposure to trivalent arsenic. Biomarkers, 2007, 12, 589-598.	1.9	18
50	Toxicological effects and bioaccumulation in the freshwater clam (<i>Corbicula fluminea</i>) following exposure to trivalent arsenic. Environmental Toxicology, 2007, 22, 502-509.	4.0	17
51	Transcriptomic analyses in a benthic fish exposed to contaminated estuarine sediments through laboratory and in situ bioassays. Ecotoxicology, 2011, 20, 1749-1764.	2.4	17
52	May sediment contamination be xenoestrogenic to benthic fish? A case study with Solea senegalensis. Marine Environmental Research, 2014, 99, 170-178.	2.5	17
53	Sediment chemistry — Infaunal community structure in a southern European estuary related to solid-phase Microtox® toxicity testing. Netherlands Journal of Aquatic Ecology, 1995, 29, 427-436.	0.3	16
54	Detection of DNA strand breakage in a marine amphipod by agarose gel electrophoresis: exposure to X-rays and copper. Biomarkers, 2002, 7, 451-463.	1.9	16

М Н Соѕта

#	Article	IF	CITATIONS
55	TOXICITY RANKING OF ESTUARINE SEDIMENTS ON THE BASIS OF SPARUS AURATA BIOMARKERS. Environmental Toxicology and Chemistry, 2007, 26, 444.	4.3	16
56	Molecular detection of prokaryote and protozoan parasites in the commercial bivalve Ruditapes decussatus from southern Portugal. Aquaculture, 2012, 370-371, 61-67.	3.5	16
57	Ecological risk assessment of impacted estuarine areas: Integrating histological and biochemical endpoints in wild Senegalese sole. Ecotoxicology and Environmental Safety, 2013, 95, 202-211.	6.0	16
58	A Study on the Digestive Physiology of a Marine Polychaete (Eulalia viridis) through Microanatomical Changes of Epithelia During the Digestive Cycle. Microscopy and Microanalysis, 2015, 21, 91-101.	0.4	16
59	Comparing the genotoxicity of a potentially carcinogenic and a noncarcinogenic <scp>PAH</scp> , singly, and in binary combination, on peripheral blood cells of the <scp>E</scp> uropean sea bass. Environmental Toxicology, 2016, 31, 1307-1318.	4.0	16
60	Studies on biomarkers of copper exposure and toxicity in the marine amphipod Gammarus locusta (Crustacea): I. Copper-containing granules within the midgut gland. Journal of the Marine Biological Association of the United Kingdom, 2002, 82, 827-834.	0.8	15
61	Quantification of metallothionein in whole bodygammarus locusta(crustacea: amphipoda) using differential pulse polarography. Toxicological and Environmental Chemistry, 2004, 86, 23-36.	1.2	13
62	Application of RAPD DNA fingerprinting in taxonomic identification of amphipods: a case-study with Gammarus species (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 171-178.	0.8	13
63	Metallothioneins and trace elements in digestive gland, gills, kidney and gonads of Octopus vulgaris. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 152, 139-146.	2.6	13
64	Integration of sediment contamination with multi-biomarker responses in a novel potential bioindicator (Sepia officinalis) for risk assessment in impacted estuaries. Ecotoxicology, 2013, 22, 1538-1554.	2.4	13
65	Broodstock diet effect on sea urchin Paracentrotus lividus (Lamarck, 1816) endotrophic larvae development: Potential for their year-round use in environmental toxicology assessment. Ecotoxicology and Environmental Safety, 2011, 74, 584-592.	6.0	12
66	Human hepatoma cells exposed to estuarine sediment contaminant extracts permitted the differentiation between cytotoxic and pro-mutagenic fractions. Environmental Pollution, 2014, 185, 141-148.	7.5	12
67	Alterations in juvenile flatfish gill epithelia induced by sediment-bound toxicants: A comparative in situ and ex situ study. Marine Environmental Research, 2015, 112, 122-130.	2.5	12
68	Trace metals in populations of Marphysa sanguinea (Montagu, 1813) from Sado estuary: effect of body size on accumulation. Scientia Marina, 2009, 73, 605-616.	0.6	12
69	Functional anatomy of the midgut gland of Gammarus locusta (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom, 2002, 82, 201-204.	0.8	11
70	Hepatic proteome changes in Solea senegalensis exposed to contaminated estuarine sediments: a laboratory and in situ survey. Ecotoxicology, 2012, 21, 1194-1207.	2.4	10
71	An integrative assessment to determine the genotoxic hazard of estuarine sediments: combining cell and whole-organism responses. Frontiers in Genetics, 2014, 5, 437.	2.3	10
72	Effects of the increase of temperature and CO2 concentration on polychaetae Nereis diversicolor: simulating extreme scenarios of climate change in marine sediments. Hydrobiologia, 2016, 772, 161-174.	2.0	7

М Н Соѕта

#	Article	IF	CITATIONS
73	Determining DNA strand breakage from embryogenic cell cultures of a conifer species using the single-cell gel electrophoresis assay. Tree Genetics and Genomes, 2012, 8, 425-430.	1.6	6
74	LOW GENETIC VARIABILITY OF THE WIDESPREAD AMPHIPOD GAMMARUS LOCUSTA, AS EVIDENCED BY ALLOZYME ELECTROPHORESIS OF SOUTHERN EUROPEAN POPULATIONS. Crustaceana, 2002, 75, 1335-1348.	0.3	5
75	HEAT SHOCK PROTEIN MICRO-ENCAPSULATION AS A DOUBLE TOOL FOR THE IMPROVEMENT OF NEW GENERATION VACCINES. Journal of Liposome Research, 2002, 12, 29-35.	3.3	5
76	Environment and human health issues. Ecotoxicology, 2009, 18, 971-973.	2.4	0
77	Microanatomical alterations in the gut of an marine polychaete (Eulalia viridis, Errantia:) Tj ETQq1 1 0.784314 rg	BT/Overlo	ock_10 Tf 50 5