
Wan Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1667031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA–Protein Cross-Links Formed by Reacting Lysine with Apurinic/Apyrimidinic Sites in DNA and Human Cells: Quantitative Analysis by Liquid Chromatography–Tandem Mass Spectrometry Coupled with Stable Isotope Dilution. Analytical Chemistry, 2022, 94, 803-810.	6.5	6
2	Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy. Chemical Research in Toxicology, 2022, , .	3.3	6
3	LC-MS/MS Quantitation of Formaldehyde–Glutathione Conjugates as Biomarkers of Formaldehyde Exposure and Exposure-Induced Antioxidants: A New Look on an Old Topic. Chemical Research in Toxicology, 2022, 35, 858-866.	3.3	0
4	Wheatgrass (<i>Triticum aestivum</i>) as an Efficient Phytoremediation Plant for Aristolochic Acid-Contaminated Water and Arable Soil. ACS Agricultural Science and Technology, 2022, 2, 639-645.	2.3	5
5	Analysis of aristolochic acids in <scp><i>Houttuynia cordata</i></scp> by liquid chromatography–tandem mass spectrometry. Journal of Mass Spectrometry, 2021, 56, e4652.	1.6	11
6	Fabric Masks as a Personal Dosimeter for Quantifying Exposure to Airborne Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 2021, 55, 5128-5135.	10.0	16
7	Formation, Stability, and Antioxidative Properties of 2-Methylthioproline and 2-Methylthioprolineglycine in Grape Wines. ACS Food Science & Technology, 2021, 1, 892-898.	2.7	0
8	Analysis of Polycyclic Aromatic Hydrocarbons and Phthalate Esters in Soil and Food Grains from the Balkan Peninsula: Implication on DNA Adduct Formation by Aristolochic Acid I and Balkan Endemic Nephropathy. Environmental Science & Technology, 2021, 55, 9024-9032.	10.0	13
9	Probing the Hidden Role of Mitochondrial DNA Damage and Dysfunction in the Etiology of Aristolochic Acid Nephropathy. Chemical Research in Toxicology, 2021, 34, 1903-1909.	3.3	10
10	Quantitation of γ-Glutamylcysteine–Formaldehyde Conjugate in Formaldehyde- and Oxidative Stress-Exposed Cells by Liquid Chromatography–Tandem Mass Spectrometry. Chemical Research in Toxicology, 2021, 34, 1782-1789.	3.3	0
11	On the Flip Side of Mask Wearing: Increased Exposure to Volatile Organic Compounds and a Risk-Reducing Solution. Environmental Science & Technology, 2021, 55, 14095-14104.	10.0	36
12	Quantitation of Protein Adducts of Aristolochic Acid I by Liquid Chromatography–Tandem Mass Spectrometry: A Novel Method for Biomonitoring Aristolochic Acid Exposure. Chemical Research in Toxicology, 2021, 34, 144-153.	3.3	11
13	Polyurethane-Based Face Mask as a Sampling Device for Environmental Tobacco Smoke. Analytical Chemistry, 2021, 93, 13912-13918.	6.5	5
14	Proteomic analysis of thioproline misincorporation in Escherichia coli. Journal of Proteomics, 2020, 210, 103541.	2.4	11
15	Liquid chromatography–tandem mass spectrometry analysis of aristolochic acids in soil samples collected from Serbia: Link to Balkan endemic nephropathy. Rapid Communications in Mass Spectrometry, 2020, 34, e8547.	1.5	15
16	Occurrence and Environmental Stability of Aristolochic Acids in Groundwater Collected from Serbia: Links to Human Exposure and Balkan Endemic Nephropathy. Environmental Science & Technology, 2020, 54, 1554-1561.	10.0	46
17	Determination of Aristolochic Acids in Vegetables: Nephrotoxic and Carcinogenic Environmental Pollutants Contaminating a Broad Swath of the Food Supply and Driving Incidence of Balkan Endemic Nephropathy. Chemical Research in Toxicology, 2020, 33, 2446-2454.	3.3	17
18	Proteomics Study of DNA–Protein Crosslinks in Methylmethanesulfonate and Fe ²⁺ -EDTA-Exposed Human Cells. Chemical Research in Toxicology, 2020, 33, 2739-2744.	3.3	5

WAN CHAN

#	Article	IF	CITATIONS
19	Remediation of aristolochic acid-contaminated soil by an effective advanced oxidation process. Science of the Total Environment, 2020, 720, 137528.	8.0	15
20	Quantitation of DNA Adducts of Aristolochic Acids in Repair-Deficient Cells: A Mechanistic Study of the DNA Repair Mechanism. Chemical Research in Toxicology, 2020, 33, 1323-1327.	3.3	15
21	LC-MS/MS Coupled with a Stable-Isotope Dilution Method for the Quantitation of Thioproline-Glycine: A Novel Metabolite in Formaldehyde- and Oxidative Stress-Exposed Cells. Chemical Research in Toxicology, 2020, 33, 1989-1996.	3.3	7
22	ldentifying Cysteine, <i>N</i> -Acetylcysteine, and Glutathione Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway. Chemical Research in Toxicology, 2020, 33, 1374-1381.	3.3	17
23	Thioproline Serves as an Efficient Antioxidant Protecting Human Cells from Oxidative Stress and Improves Cell Viability. Chemical Research in Toxicology, 2020, 33, 1815-1821.	3.3	28
24	Quantitation of <i>N</i> ⁶ -Formyl-lysine Adduct Following Aristolochic Acid Exposure in Cells and Rat Tissues by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope-Dilution Method. Chemical Research in Toxicology, 2019, 32, 2086-2094.	3.3	9
25	Revisiting Fragmentation Reactions of Protonated α-Amino Acids by High-Resolution Electrospray Ionization Tandem Mass Spectrometry with Collision-Induced Dissociation. Scientific Reports, 2019, 9, 6453.	3.3	67
26	Quantification of a Novel DNA–Protein Cross-Link Product Formed by Reacting Apurinic/Apyrimidinic Sites in DNA with Cysteine Residues in Protein by Liquid Chromatography-Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Analytical Chemistry, 2019, 91, 4987-4994.	6.5	17
27	Development of a novel liquid chromatography-tandem mass spectrometric method for aristolochic acids detection: Application in food and agricultural soil analyses. Food Chemistry, 2019, 289, 673-679.	8.2	35
28	Aristolochic Acids: Newly Identified Exposure Pathways of this Class of Environmental and Food-Borne Contaminants and its Potential Link to Chronic Kidney Diseases. Toxics, 2019, 7, 14.	3.7	23
29	Gas-Phase Fragmentation Reactions of Protonated Cystine using High-Resolution Tandem Mass Spectrometry. Molecules, 2019, 24, 747.	3.8	3
30	Transcriptomic responses of the marine cyanobacterium <i>Prochlorococcus</i> to viral lysis products. Environmental Microbiology, 2019, 21, 2015-2028.	3.8	14
31	Quantitation of DNA Adducts in Target and Nontarget Organs of Aristolochic Acid I-Exposed Rats: Correlating DNA Adduct Levels with Organotropic Activities. Chemical Research in Toxicology, 2019, 32, 397-399.	3.3	24
32	Investigation of the chemical structure and formation mechanism of polydopamine from selfâ€assembly of dopamine by liquid chromatography/mass spectrometry coupled with isotopeâ€labelling techniques. Rapid Communications in Mass Spectrometry, 2019, 33, 429-436.	1.5	21
33	Evaluating the performance of sample preparation methods for ultraâ€performance liquid chromatography/mass spectrometry based serum metabonomics. Rapid Communications in Mass Spectrometry, 2019, 33, 561-568.	1.5	4
34	Singleâ€Turnover Kinetics Reveal a Distinct Mode of Thiamine Diphosphateâ€Dependent Catalysis in Vitaminâ€K Biosynthesis. ChemBioChem, 2018, 19, 1514-1522.	2.6	3
35	Aristolochic Acids as Persistent Soil Pollutants: Determination of Risk for Human Exposure and Nephropathy from Plant Uptake. Journal of Agricultural and Food Chemistry, 2018, 66, 11468-11476.	5.2	36
36	Etiology of Balkan Endemic Nephropathy: An Update on Aristolochic Acids Exposure Mechanisms. Chemical Research in Toxicology, 2018, 31, 1109-1110.	3.3	22

WAN CHAN

#	Article	IF	CITATIONS
37	Quantification of DNA and Protein Adducts of 1-Nitropyrene: Significantly Higher Levels of Protein than DNA Adducts in the Internal Organs of 1-Nitropyrene Exposed Rats. Chemical Research in Toxicology, 2018, 31, 680-687.	3.3	10
38	Cooking methods employing natural anti-oxidant food additives effectively reduced concentration of nephrotoxic and carcinogenic aristolochic acids in contaminated food grains. Food Chemistry, 2018, 264, 270-276.	8.2	9
39	Development of a QuEChERS-Based Method for Determination of Carcinogenic 2-Nitrofluorene and 1-Nitropyrene in Rice Grains and Vegetables: A Comparative Study with Benzo[<i>a</i>]pyrene. Journal of Agricultural and Food Chemistry, 2017, 65, 1992-1999.	5.2	44
40	Plant Uptake and Metabolism of Nitrofuran Antibiotics in Spring Onion Grown in Nitrofuran-Contaminated Soil. Journal of Agricultural and Food Chemistry, 2017, 65, 4255-4261.	5.2	23
41	Comprehensive Analysis of Acylcarnitine Species in <i>db/db</i> Mouse Using a Novel Method of High-Resolution Parallel Reaction Monitoring Reveals Widespread Metabolic Dysfunction Induced by Diabetes. Analytical Chemistry, 2017, 89, 10368-10375.	6.5	33
42	Determination of 2-alkylcyclobutanones in ultraviolet light-irradiated fatty acids, triglycerides, corn oil, and pork samples: Identifying a new source of 2-alkylcyclobutanones. Food Chemistry, 2017, 217, 352-359.	8.2	6
43	A Thiamine-Dependent Enzyme Utilizes an Active Tetrahedral Intermediate in Vitamin K Biosynthesis. Journal of the American Chemical Society, 2016, 138, 7244-7247.	13.7	14
44	Facile Formation of a DNA Adduct of Semicarbazide on Reaction with Apurinic/Apyrimidinic Sites in DNA. Chemical Research in Toxicology, 2016, 29, 834-840.	3.3	15
45	Uptake and Accumulation of Nephrotoxic and Carcinogenic Aristolochic Acids in Food Crops Grown in <i>Aristolochia clematitis</i> -Contaminated Soil and Water. Journal of Agricultural and Food Chemistry, 2016, 64, 107-112.	5.2	37
46	Quantitation of the DNA Adduct of Semicarbazide in Organs of Semicarbazide-Treated Rats by Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry: A Comparative Study with the RNA Adduct. Chemical Research in Toxicology, 2016, 29, 1560-1564.	3.3	16
47	Quantitation of Aristolochic Acids in Corn, Wheat Grain, and Soil Samples Collected in Serbia: Identifying a Novel Exposure Pathway in the Etiology of Balkan Endemic Nephropathy. Journal of Agricultural and Food Chemistry, 2016, 64, 5928-5934.	5.2	62
48	ldentification of Protein Thiazolidination as a Novel Molecular Signature for Oxidative Stress and Formaldehyde Exposure. Chemical Research in Toxicology, 2016, 29, 1865-1871.	3.3	27
49	Determination of 2-alkylcyclobutanones by combining precolumn derivatization with 1-naphthalenyl hydrazine and ultra-performance liquid chromatography with fluorescence detection. Analytical and Bioanalytical Chemistry, 2016, 408, 3707-3714.	3.7	3
50	An investigation on the chemical structure of nitrogen and sulfurÂcodoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 5347-5357.	3.7	31
51	Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry. Analytica Chimica Acta, 2016, 911, 100-107.	5.4	14
52	Automated In-Injector Derivatization Combined with High-Performance Liquid Chromatography–Fluorescence Detection for the Determination of Semicarbazide in Fish and Bread Samples. Journal of Agricultural and Food Chemistry, 2016, 64, 2802-2808.	5.2	27
53	Quantitation of Thioprolines in Grape Wine by Isotope Dilution–Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 1361-1366.	5.2	12
54	Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases. Analytical and Bioanalytical Chemistry, 2016, 408, 953-961.	3.7	6

Wan Chan

#	Article	IF	CITATIONS
55	Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins. Scientific Reports, 2015, 5, 15192.	3.3	4
56	Regulation of DNA phosphorothioate modification in Salmonella enterica by DndB. Scientific Reports, 2015, 5, 12368.	3.3	32
57	Comparison of DNA and RNA Adduct Formation: Significantly Higher Levels of RNA than DNA Modifications in the Internal Organs of Aristolochic Acid-Dosed Rats. Chemical Research in Toxicology, 2015, 28, 248-255.	3.3	36
58	Mass Spectrometric and Spectrophotometric Analyses Reveal an Alternative Structure and a New Formation Mechanism for Melanin. Analytical Chemistry, 2015, 87, 7958-7963.	6.5	35
59	Combination of Precolumn Nitro-reduction and Ultraperformance Liquid Chromatography with Fluorescence Detection for the Sensitive Quantification of 1-Nitronaphthalene, 2-Nitrofluorene, and 1-Nitropyrene in Meat Products. Journal of Agricultural and Food Chemistry, 2015, 63, 3161-3167.	5.2	35
60	Quantification of Aristolochic Acid-RNA Adducts in the Urine of Aristolochic Acid-Treated Rats by Liquid Chromatography–Tandem Mass Spectrometry. Chemical Research in Toxicology, 2015, 28, 567-569.	3.3	12
61	Metabolic fate of endogenous molecular damage: Urinary glutathione conjugates of DNA-derived base propenals as markers of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4845-53.	7.1	11
62	Quantification of Thiazolidine-4-carboxylic Acid in Toxicant-Exposed Cells by Isotope-Dilution Liquid Chromatography–Mass Spectrometry Reveals an Intrinsic Antagonistic Response to Oxidative Stress-Induced Toxicity. Chemical Research in Toxicology, 2015, 28, 394-400.	3.3	11
63	A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: comparative studies with the standard Jaffé and isotope-dilution mass spectrometric assays. Analytical and Bioanalytical Chemistry, 2014, 406, 1807-1812.	3.7	19
64	Determination of Aristolochic Acids by High-Performance Liquid Chromatography with Fluorescence Detection. Journal of Agricultural and Food Chemistry, 2014, 62, 5859-5864.	5.2	38
65	Noninvasive measurement of aristolochic acid-DNA adducts in urine samples from aristolochic acid-treated rats by liquid chromatography coupled tandem mass spectrometry: Evidence for DNA repair by nucleotide-excision repair mechanisms. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 766-767, 1-6.	1.0	21
66	Rapid identification of γ-irradiated food by direct solvent extraction and liquid chromatography–tandem mass spectrometric analysis of 2-dodecylcyclobutanone: Application in surveillance of irradiated food. Food Chemistry, 2014, 161, 312-316.	8.2	6
67	Combination of pentafluorophenylhydrazine derivatization and isotope dilution LC-MS/MS techniques for the quantification of apurinic/apyrimidinic sites in cellular DNA. Analytical and Bioanalytical Chemistry, 2013, 405, 4059-4066.	3.7	29
68	Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. Journal of Chromatography A, 2013, 1304, 234-240.	3.7	66
69	Probing Histidine-Stabilized Gold Nanoclusters Product by High-Performance Liquid Chromatography and Mass Spectrometry. Journal of Physical Chemistry C, 2013, 117, 18697-18708.	3.1	35
70	Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2013, 74, 156-161.	2.8	18
71	Quantification of the 2-Deoxyribonolactone and Nucleoside 5â€2-Aldehyde Products of 2-Deoxyribose Oxidation in DNA and Cells by Isotope-Dilution Gas Chromatography Mass Spectrometry: Differential Effects of γ-Radiation and Fe2+â^'EDTA. Journal of the American Chemical Society, 2010, 132, 6145-6153.	13.7	59
72	Recent progress in quantitative analysis of DNA adducts of nephrotoxin aristolochic acid. Science in China Series B: Chemistry, 2009, 52, 1576-1582.	0.8	0

WAN CHAN

#	Article	IF	CITATIONS
73	A new approach for the sensitive determination of DNA adduct of aristolochic acid II by using high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 848-852.	2.3	3
74	Liquid chromatography/mass spectrometry for metabonomics investigation of the biochemical effects induced by aristolochic acid in rats: the use of informationâ€dependent acquisition for biomarker identification. Rapid Communications in Mass Spectrometry, 2008, 22, 873-880.	1.5	38
75	Characterization of the DNA adducts induced by aristolochic acids in oligonucleotides by electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 3735-3742.	1.5	9
76	Aristolochic acid induced changes in the metabolic profile of rat urine. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 757-762.	2.8	28
77	Quantification of aristolochic acid-derived DNA adducts in rat kidney and liver by using liquid chromatography–electrospray ionization mass spectrometry. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 646, 17-24.	1.0	27
78	High performance liquid chromatography–mass spectrometry analysis for rat metabolism and pharmacokinetic studies of lithospermic acid B from danshen. Talanta, 2008, 75, 1002-1007.	5.5	18
79	Investigation of the Metabolism and Reductive Activation of Carcinogenic Aristolochic Acids in Rats. Drug Metabolism and Disposition, 2007, 35, 866-874.	3.3	55
80	A sensitivity enhanced high-performance liquid chromatography fluorescence method for the detection of nephrotoxic and carcinogenic aristolochic acid in herbal medicines. Journal of Chromatography A, 2007, 1164, 113-119.	3.7	57
81	Liquid chromatography—tandem mass spectrometry analysis of the DNA adducts of aristolochic acids. Journal of the American Society for Mass Spectrometry, 2007, 18, 642-650.	2.8	36
82	Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 1755-1760.	1.5	79
83	Differentiation of herbs linked to "Chinese herb nephropathy―from the liquid chromatographic determination of aristolochic acids. Analytica Chimica Acta, 2006, 576, 112-116.	5.4	28
84	Determination of Aristolochic Acids in Soil, Water, and Herbal Plants in Medicinal Plant Cultivation Areas: An Emerging Environmental Contaminant Worth Concerning. ACS Agricultural Science and Technology, 0, , .	2.3	5