
Esteban MartÃ-nez-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1665329/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Efficiency Multi-site Genomic Editing (HEMSE) Made Easy. Methods in Molecular Biology, 2022, 2479, 37-52.	0.9	0
2	Quantitative assessment of morphological traits of planktonic bacterial aggregates. Water Research, 2021, 188, 116468.	11.3	4
3	Ribonucleases control distinct traits of <i>Pseudomonas putida</i> lifestyle. Environmental Microbiology, 2021, 23, 174-189.	3.8	5
4	Engineering Tropism of <i>Pseudomonas putida</i> toward Target Surfaces through Ectopic Display of Recombinant Nanobodies. ACS Synthetic Biology, 2021, 10, 2049-2059.	3.8	11
5	The environmental occurrence of <i>Pseudomonas aeruginosa</i> . Apmis, 2020, 128, 220-231.	2.0	160
6	Mismatch repair hierarchy of <i>Pseudomonas putida</i> revealed by mutagenic ssDNA recombineering of the <i>pyrF</i> gene. Environmental Microbiology, 2020, 22, 45-58.	3.8	22
7	SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Research, 2020, 48, D1164-D1170.	14.5	82
8	Naked Bacterium: Emerging Properties of a Surfome-Streamlined <i>Pseudomonas putida</i> Strain. ACS Synthetic Biology, 2020, 9, 2477-2492.	3.8	15
9	Targeted Depletion of Bacteria from Mixed Populations by Programmable Adhesion with Antagonistic Competitor Cells. Cell Host and Microbe, 2020, 28, 313-321.e6.	11.0	62
10	Exploiting geometric similarity for statistical quantification of fluorescence spatial patterns in bacterial colonies. BMC Bioinformatics, 2020, 21, 224.	2.6	0
11	High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering. IScience, 2020, 23, 100946.	4.1	32
12	Multifunctional SEVA shuttle vectors for actinomycetes and Gramâ€negative bacteria. MicrobiologyOpen, 2020, 9, 1135-1149.	3.0	12
13	Environmental Performance of <i>Pseudomonas putida</i> with a Uracylated Genome. ChemBioChem, 2020, 21, 3255-3265.	2.6	3
14	A Broad Host Range Plasmid-Based Roadmap for ssDNA-Based Recombineering in Gram-Negative Bacteria. Methods in Molecular Biology, 2020, 2075, 383-398.	0.9	11
15	<scp>CRISPR</scp> /Cas9â€enhanced ss <scp>DNA</scp> recombineering for <i>Pseudomonas putida</i> . Microbial Biotechnology, 2019, 12, 1076-1089.	4.2	31
16	Pseudomonas putida in the quest of programmable chemistry. Current Opinion in Biotechnology, 2019, 59, 111-121.	6.6	38
17	Improved Thermotolerance of Genomeâ€Reduced <i>Pseudomonas putida</i> EM42 Enables Effective Functioning of the P _L / <i>c</i> 1857 System. Biotechnology Journal, 2019, 14, e1800483.	3.5	27
18	Assembly of a Custom-made Device to Study Spreading Patterns of Pseudomonas putida Biofilms. Bio-protocol, 2019, 9, e3238.	0.4	0

Esteban MartÃnez-GarcÃa

#	Article	IF	CITATIONS
19	CRISPR/Cas9â€Based Counterselection Boosts Recombineering Efficiency in <i>Pseudomonas putida</i> . Biotechnology Journal, 2018, 13, e1700161.	3.5	115
20	A standardized workflow for surveying recombinases expands bacterial genomeâ€editing capabilities. Microbial Biotechnology, 2018, 11, 176-188.	4.2	43
21	Modulating Heterologous Gene Expression with Portable mRNA-Stabilizing 5′-UTR Sequences. ACS Synthetic Biology, 2018, 7, 2177-2188.	3.8	24
22	Dynamics of <i>Pseudomonas putida</i> biofilms in an upscale experimental framework. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 899-911.	3.0	7
23	The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. Microbiology (United Kingdom), 2018, 164, 883-888.	1.8	33
24	Eco-evolutionary feedbacks can rescue cooperation in microbial populations. Scientific Reports, 2017, 7, 42561.	3.3	17
25	Molecular tools and emerging strategies for deep genetic/genomic refactoring of Pseudomonas. Current Opinion in Biotechnology, 2017, 47, 120-132.	6.6	63
26	Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors. Methods in Molecular Biology, 2017, 1498, 273-293.	0.9	23
27	Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells. Frontiers in Microbiology, 2016, 7, 1437.	3.5	26
28	Stenosis triggers spread of helical Pseudomonas biofilms in cylindrical flow systems. Scientific Reports, 2016, 6, 27170.	3.3	4
29	The quest for the minimal bacterial genome. Current Opinion in Biotechnology, 2016, 42, 216-224.	6.6	49
30	The Ssr protein (T1E_1405) from <i>Pseudomonas putida</i> DOTâ€T1E enables oligonucleotideâ€based recombineering in platform strain <i>P. putida</i> EM42. Biotechnology Journal, 2016, 11, 1309-1319.	3.5	65
31	An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology. ACS Synthetic Biology, 2016, 5, 1127-1135.	3.8	31
32	Rationally rewiring the connectivity of the XylR/Pu regulatory node of the m-xylene degradation pathway in Pseudomonas putida. Integrative Biology (United Kingdom), 2016, 8, 571-576.	1.3	0
33	Mining Environmental Plasmids for Synthetic Biology Parts and Devices. Microbiology Spectrum, 2015, 3, PLAS-0033-2014.	3.0	18
34	Biofilm Formation As a Response to Ecological Competition. PLoS Biology, 2015, 13, e1002191.	5.6	232
35	SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Research, 2015, 43, D1183-D1189.	14.5	195
36	Broadening the SEVA Plasmid Repertoire to Facilitate Genomic Editing of Gram-Negative Bacteria. Springer Protocols, 2015, , 9-27.	0.3	9

#	Article	IF	CITATIONS
37	Freeing <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>KT</scp> 2440 of its proviral load strengthens endurance to environmental stresses. Environmental Microbiology, 2015, 17, 76-90.	3.8	62
38	Widening functional boundaries of the Ïf ⁵⁴ promoter Pu of Pseudomonas putida by defeating extant physiological constraints. Molecular BioSystems, 2015, 11, 734-742.	2.9	4
39	Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microbial Cell Factories, 2014, 13, 159.	4.0	199
40	Biotechnological domestication of pseudomonads using synthetic biology. Nature Reviews Microbiology, 2014, 12, 368-379.	28.6	332
41	The metabolic cost of flagellar motion in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>KT</scp> 2440. Environmental Microbiology, 2014, 16, 291-303.	3.8	132
42	New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories. Frontiers in Bioengineering and Biotechnology, 2014, 2, 46.	4.1	85
43	The Standard European Vector Architecture (SEVA) Plasmid Toolkit. Methods in Molecular Biology, 2014, 1149, 469-478.	0.9	28
44	Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microbial Cell Factories, 2013, 12, 50.	4.0	77
45	The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research, 2013, 41, D666-D675.	14.5	556
46	Transposon-Based and Plasmid-Based Genetic Tools for Editing Genomes of Gram-Negative Bacteria. Methods in Molecular Biology, 2012, 813, 267-283.	0.9	92
47	Engineering multiple genomic deletions in Gramâ€negative bacteria: analysis of the multiâ€resistant antibiotic profile of <i>Pseudomonas putida</i> KT2440. Environmental Microbiology, 2011, 13, 2702-2716.	3.8	329
48	pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiology, 2011, 11, 38.	3.3	142
49	Stationary phase in gram-negative bacteria. FEMS Microbiology Reviews, 2010, 34, 476-495.	8.6	377
50	Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiology Reviews, 2010, 34, 842-865.	8.6	45
51	Social Evolution of Spatial Patterns in Bacterial Biofilms: When Conflict Drives Disorder. American Naturalist, 2009, 174, 1-12.	2.1	273
52	Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene, 2004, 341, 167-179.	2.2	37
53	Polymorphism in the yclC-rpoS Region of Enterobacteria. Current Microbiology, 2003, 46, 365-370.	2.2	12
54	GASP phenotype: presence in enterobacteria and independence of ÃSin its acquisition. FEMS Microbiology Letters, 2003, 225, 201-206.	1.8	14

#	Article	IF	CITATIONS
55	Identification of an Unknown Promoter, OUTIIp , within the IS 10 R Element. Journal of Bacteriology, 2003, 185, 2046-2050.	2.2	6
56	Enterobacter cloacae rpoS promoter and gene organization. Archives of Microbiology, 2002, 179, 33-41.	2.2	5
57	Further studies on RpoS in enterobacteria: identification of rpoS in Enterobacter cloacae and Kluyvera cryocrescens. Archives of Microbiology, 2001, 175, 395-404.	2.2	16
58	Mining Environmental Plasmids for Synthetic Biology Parts and Devices. , 0, , 633-649.		2