Chit-Laa Poh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1665289/publications.pdf Version: 2024-02-01

Сніт-І лл Рон

#	Article	IF	CITATIONS
1	The largest outbreak of hand; foot and mouth disease in Singapore in 2008: The role of enterovirus 71 and coxsackievirus A strains. International Journal of Infectious Diseases, 2010, 14, e1076-e1081.	3.3	311
2	ldentification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Research, 2007, 125, 61-68.	2.2	196
3	Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor. Journal of Virology, 2013, 87, 611-620.	3.4	183
4	Development of Novel Vaccines against Enterovirus-71. Viruses, 2016, 8, 1.	3.3	176
5	Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses, 2020, 12, 184.	3.3	133
6	Passive protection against lethal enterovirus 71 infection in newborn mice by neutralizing antibodies elicited by a synthetic peptide. Microbes and Infection, 2007, 9, 1299-1306.	1.9	128
7	Direct Detection of Enterovirus 71 (EV71) in Clinical Specimens from a Hand, Foot, and Mouth Disease Outbreak in Singapore by Reverse Transcription-PCR with Universal Enterovirus and EV71-Specific Primers. Journal of Clinical Microbiology, 2002, 40, 2823-2827.	3.9	97
8	Inhibition of Gene Expression and Growth by Antisense Peptide Nucleic Acids in a Multiresistant β-Lactamase-Producing Klebsiella pneumoniae Strain. Antimicrobial Agents and Chemotherapy, 2007, 51, 805-811.	3.2	95
9	Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines, 2020, 8, 132.	4.4	90
10	Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene, 1994, 151, 29-36.	2.2	77
11	Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics, 2008, 8, 874-881.	2.2	76
12	Complete Sequence Analyses of Enterovirus 71 Strains from Fatal and Nonâ€Fatal Cases of the Hand, Foot and Mouth Disease Outbreak in Singapore (2000). Microbiology and Immunology, 2002, 46, 801-808.	1.4	70
13	Role of microRNAs in antiviral responses to dengue infection. Journal of Biomedical Science, 2020, 27, 4.	7.0	69
14	RT-PCR, nucleotide, amino acid and phylogenetic analyses of enterovirus type 71 strains from Asia. Journal of Virological Methods, 2000, 88, 193-204.	2.1	65
15	RNA interference against Enterovirus 71 infection. Virology, 2005, 341, 72-79.	2.4	64
16	Peptides as Therapeutic Agents for Dengue Virus. International Journal of Medical Sciences, 2017, 14, 1342-1359.	2.5	63
17	Novel β-Lactamase Genes from Two Environmental Isolates of Vibrio harveyi. Antimicrobial Agents and Chemotherapy, 2000, 44, 1309-1314.	3.2	62
18	ldentification of vaccine candidate antigens of an ESBL producingKlebsiella pneumoniae clinical strain by immunoproteome analysis. Proteomics, 2006, 6, 836-844.	2.2	58

#	Article	IF	CITATIONS
19	Purification and Characterization of Gentisate 1,2-Dioxygenases from <i>Pseudomonas alcaligenes</i> NCIB 9867 and <i>Pseudomonas putida</i> NCIB 9869. Applied and Environmental Microbiology, 1999, 65, 946-950.	3.1	56
20	Rapid detection of Enterovirus 71 by real-time TaqMan RT-PCR. Journal of Clinical Virology, 2008, 42, 203-206.	3.1	53
21	Inhibition of Enterovirus 71 in Virus-infected Mice by RNA Interference. Molecular Therapy, 2007, 15, 1931-1938.	8.2	52
22	Genetic Determinants of Tetracycline Resistance in Vibrio harveyi. Antimicrobial Agents and Chemotherapy, 2002, 46, 1038-1045.	3.2	51
23	Development of MicroRNAs as Potential Therapeutics against Cancer. Journal of Oncology, 2020, 2020, 1-14.	1.3	49
24	Structural Vaccinology for Viral Vaccine Design. Frontiers in Microbiology, 2019, 10, 738.	3.5	47
25	Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Frontiers in Pharmacology, 2021, 12, 682286.	3.5	47
26	In vitro evaluation of the antiviral activity of heparan sulfate mimetic compounds against Enterovirus 71. Virus Research, 2012, 169, 22-29.	2.2	46
27	Tn5563, a transposon encoding putative mercuric ion transport proteins located on plasmid pRA2 ofPseudomonas alcaligenes. FEMS Microbiology Letters, 1998, 165, 253-260.	1.8	43
28	Identification of immunodominant VP1 linear epitope of enterovirus 71 (EV71) using synthetic peptides for detecting human anti-EV71 IgG antibodies in western blots. Clinical Microbiology and Infection, 2008, 14, 286-288.	6.0	43
29	Monitoring of active but non-culturable bacterial cells by flow cytometry. Biotechnology and Bioengineering, 2005, 89, 24-31.	3.3	42
30	Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomedical Journal, 2021, 44, 18-30.	3.1	42
31	Rapid Detection of Klebsiella pneumoniae from Blood Culture Bottles by Real-Time PCR. Journal of Clinical Microbiology, 2004, 42, 1337-1340.	3.9	41
32	Inhibition of Enterovirus 71 (EV-71) Infections by a Novel Antiviral Peptide Derived from EV-71 Capsid Protein VP1. PLoS ONE, 2012, 7, e34589.	2.5	41
33	Development of multiplex real-time hybridization probe reverse transcriptase polymerase chain reaction for specific detection and differentiation of Enterovirus 71 and Coxsackievirus A16. Diagnostic Microbiology and Infectious Disease, 2008, 61, 294-301.	1.8	38
34	Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Veterinary Research, 2019, 50, 78.	3.0	38
35	Molecular and Biochemical Characterization of the xlnD -Encoded 3-Hydroxybenzoate 6-Hydroxylase Involved in the Degradation of 2,5-Xylenol via the Gentisate Pathway in Pseudomonas alcaligenes NCIMB 9867. Journal of Bacteriology, 2005, 187, 7696-7702.	2.2	37
36	Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis. Microbiology (United Kingdom), 1997, 143, 2833-2840.	1.8	36

#	Article	IF	CITATIONS
37	Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Applied Microbiology and Biotechnology, 1999, 51, 833-840.	3.6	35
38	Protective Efficacy of DNA Vaccines Encoding Outer Membrane Protein A and OmpK36 of Klebsiella pneumoniae in Mice. Vaccine Journal, 2011, 18, 82-88.	3.1	35
39	Characterization of the Endogenous Plasmid fromPseudomonas alcaligenes NCIB 9867: DNA Sequence and Mechanism of Transfer. Journal of Bacteriology, 2000, 182, 81-90.	2.2	34
40	Cloning and characterization of a metalloprotease from Vibrio harveyi strain AP6. Gene, 2003, 303, 147-156.	2.2	33
41	Development of Peptide-Based Vaccines for Cancer. Journal of Oncology, 2022, 2022, 1-17.	1.3	32
42	Molecular analysis of the pRA2 partitioning region: ParB autoregulates parAB transcription and forms a nucleoprotein complex with the plasmid partition site, parS. Molecular Microbiology, 2001, 40, 621-633.	2.5	31
43	Cloning and characterization of a novel lipase from Vibrio harveyi strain AP6. Gene, 2003, 312, 181-188.	2.2	30
44	Proteome investigation of the global regulatory role of σ54 in response to gentisate induction inPseudomonas alcaligenes NCIMB 9867. Proteomics, 2005, 5, 1868-1876.	2.2	30
45	Specific detection of enterovirus 71 directly from clinical specimens using real-time RT-PCR hybridization probe assay. Molecular and Cellular Probes, 2006, 20, 135-140.	2.1	30
46	Identification of Human CD4 ⁺ T-Cell Epitopes on the VP1 Capsid Protein of Enterovirus 71. Viral Immunology, 2008, 21, 215-224.	1.3	30
47	Comparative proteome analyses of host protein expression in response to Enterovirus 71 and Coxsackievirus A16 infections. Journal of Proteomics, 2011, 74, 2018-2024.	2.4	29
48	Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. International Journal of Molecular Sciences, 2019, 20, 4657.	4.1	29
49	Development of oncolytic viruses for cancer therapy. Translational Research, 2021, 237, 98-123.	5.0	29
50	Recent advances in typing of Pseudomonas aeruginosa. Journal of Hospital Infection, 1993, 24, 175-181.	2.9	28
51	Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and <i>In Vitro</i> Disease Modeling. Stem Cells International, 2015, 2015, 1-11.	2.5	28
52	Advances in Antigenic Peptide-Based Vaccine and Neutralizing Antibodies against Viruses Causing Hand, Foot, and Mouth Disease. International Journal of Molecular Sciences, 2019, 20, 1256.	4.1	28
53	Proteome analysis of gentisate-induced response inPseudomonas alcaligenes NCIB 9867. Proteomics, 2004, 4, 2028-2036.	2.2	27
54	Enhanced potency and efficacy of 29-mer shRNAs in inhibition of Enterovirus 71. Antiviral Research, 2007, 74, 9-15.	4.1	27

#	Article	IF	CITATIONS
55	Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses, 2020, 12, 367.	3.3	27
56	Oncogenic Signaling in Tumorigenesis and Applications of siRNA Nanotherapeutics in Breast Cancer. Cancers, 2019, 11, 632.	3.7	26
57	Antiviral activity of silymarin and baicalein against dengue virus. Scientific Reports, 2021, 11, 21221.	3.3	26
58	PNMA family: Protein interaction network and cell signalling pathways implicated in cancer and apoptosis. Cellular Signalling, 2018, 45, 54-62.	3.6	25
59	Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169.	4.4	25
60	Antivirals blocking entry of enteroviruses and therapeutic potential. Journal of Biomedical Science, 2021, 28, 10.	7.0	25
61	Highly Attenuated <i>Bordetella pertussis</i> Strain BPZE1 as a Potential Live Vehicle for Delivery of Heterologous Vaccine Candidates. Infection and Immunity, 2008, 76, 111-119.	2.2	24
62	Development of Peptide Vaccines in Dengue. Current Pharmaceutical Design, 2018, 24, 1157-1173.	1.9	24
63	Pulsed-field gel electrophoresis for differentiation of hospital isolates of Klebsiella pneumoniae. Journal of Hospital Infection, 1993, 24, 123-128.	2.9	22
64	Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Isolates from Pediatric Patients in Singapore. Antimicrobial Agents and Chemotherapy, 2000, 44, 2193-2196.	3.2	22
65	Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine. PLoS ONE, 2016, 11, e0155900.	2.5	22
66	Sequence analysis of plasmid pRA2 fromPseudomonas alcaligenesNCIB 9867 (P25X) reveals a novel replication region. FEMS Microbiology Letters, 1998, 158, 159-165.	1.8	21
67	Molecular characterization of an inducible gentisate 1,2-dioxygenase gene, xlnE, from Pseudomonas alcaligenes NCIMB 9867. Gene, 2003, 312, 239-248.	2.2	21
68	Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology, 2017, 506, 121-129.	2.4	21
69	Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Scientific Reports, 2019, 9, 4805.	3.3	21
70	Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complementary Medicine and Therapies, 2020, 20, 97.	2.7	21
71	Changes in the EV-A71 Genome through Recombination and Spontaneous Mutations: Impact on Virulence. Viruses, 2018, 10, 320.	3.3	20

Cloning and expression of the Apa LI, Nsp I, Nsp HI, Sac I, Sca I, and Sap I restriction-modification systems in Escherichia coli. Molecular Genetics and Genomics, 1998, 260, 226-231.

#	Article	IF	CITATIONS
73	Steric Hindrance Regulation of the Pseudomonas aeruginosa Amidase Operon. Journal of Biological Chemistry, 2000, 275, 30660-30667.	3.4	18
74	Identification of amino acid residues essential for catalytic activity of gentisate 1,2-dioxygenase fromPseudomonas alcaligenesNCIB 9867. FEMS Microbiology Letters, 2001, 204, 141-146.	1.8	18
75	Distinct functional domains of PNMA5 mediate protein–protein interaction, nuclear localization, and apoptosis signaling in human cancer cells. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1967-1977.	2.5	18
76	Development of potential antiviral strategy against coxsackievirus B4. Virus Research, 2010, 150, 85-92.	2.2	16
77	IS1491fromPseudomonas alcaligenesNCIB 9867: Characterization and Distribution amongPseudomonasSpecies. Plasmid, 1998, 39, 187-195.	1.4	15
78	Insights into innate and adaptive immune responses in vaccine development against EV-A71. , 2019, 7, 251513551988899.	2.3	15
79	Antiviral peptides against Enterovirus A71 causing hand, foot and mouth disease. Peptides, 2021, 136, 170443.	2.4	15
80	Characterization of IS1474, an insertion sequence of the IS21 family isolated from Pseudomonas alcaligenes NCIB 9867. FEMS Microbiology Letters, 2006, 149, 257-263.	1.8	14
81	Characterization of hbzE-encoded gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIMB 9867. Research in Microbiology, 2007, 158, 608-616.	2.1	14
82	Inhibition of enterovirus 71 infection by antisense octaguanidinium dendrimer-conjugated morpholino oligomers. Antiviral Research, 2014, 107, 35-41.	4.1	14
83	Direct identification of Pseudomonas aeruginosa from blood culture bottles by PCR-enzyme linked immunosorbent assay using oprI gene specific primers. Molecular and Cellular Probes, 2005, 19, 417-421.	2.1	13
84	Development of RNA interference (RNAi) as potential antiviral strategy against enterovirus 70. Journal of Medical Virology, 2008, 80, 1025-1032.	5.0	13
85	Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. Journal of Oncology, 2022, 2022, 1-25.	1.3	13
86	Enzymatic profile of clinical isolates ofAcinetobacter calcoaceticus. Medical Microbiology and Immunology, 1985, 174, 29-33.	4.8	12
87	Beta-actin variant is necessary for Enterovirus 71 replication. Biochemical and Biophysical Research Communications, 2013, 433, 607-610.	2.1	12
88	Identification of molecular determinants of cell culture growth characteristics of Enterovirus 71. Virology Journal, 2016, 13, 194.	3.4	12
89	Enhancement of Tetravalent Immune Responses to Highly Conserved Epitopes of a Dengue Peptide Vaccine Conjugated to Polystyrene Nanoparticles. Vaccines, 2020, 8, 417.	4.4	12
90	Development of Novel miRNA-based Vaccines and Antivirals against Enterovirus 71. Current Pharmaceutical Design, 2017, 22, 6694-6700.	1.9	12

#	Article	IF	CITATIONS
91	The Conserved Molecular Determinants of Virulence in Dengue Virus. International Journal of Medical Sciences, 2019, 16, 355-365.	2.5	11
92	Tricistronic expression of MOAP-1, Bax and RASSF1A in cancer cells enhances chemo-sensitization that requires BH3L domain of MOAP-1. Journal of Cancer Research and Clinical Oncology, 2020, 146, 1751-1764.	2.5	11
93	Identification of B-Cell Epitopes for Eliciting Neutralizing Antibodies against the SARS-CoV-2 Spike Protein through Bioinformatics and Monoclonal Antibody Targeting. International Journal of Molecular Sciences, 2022, 23, 4341.	4.1	11
94	IS1394 from Pseudomonas alcaligenes N.C.I.B. 9867: identification and characterization of a member of the IS30 family of insertion elements. Gene, 1996, 175, 109-113.	2.2	10
95	Isolation and Characterization of Group II Introns from Pseudomonas alcaligenes and Pseudomonas putida. Plasmid, 2001, 45, 233-239.	1.4	10
96	T Cell Immunity To Enterovirus 71 Infection In Humans And Implications For Vaccine Development. International Journal of Medical Sciences, 2018, 15, 1143-1152.	2.5	10
97	Identification and selection of immunodominant B and T cell epitopes for dengue multi-epitope-based vaccine. Medical Microbiology and Immunology, 2021, 210, 1-11.	4.8	10
98	Proteome analysis of heat shock protein expression inPseudomonas alcaligenes NCIMB 9867 in response to gentisate exposure and elevated growth temperature. Biotechnology and Bioengineering, 2007, 97, 506-514.	3.3	9
99	Construction of an infectious cDNA clone of Enterovirus 71: Insights into the factors ensuring experimental success. Journal of Virological Methods, 2014, 197, 67-76.	2.1	8
100	Polymerase chain reaction and direct sequencing of Neisseria gonorrhoeae protein IB gene: partial nucleotide and amino acid sequence analysis of strains S4, S11, S48 (serovar IB4) and S34 (serovar IB5). Medical Microbiology and Immunology, 1993, 182, 137-45.	4.8	7
101	Pluripotent Human embryonic stem cell derived neural lineages for in vitro modelling of enterovirus 71 infectionÂand therapy. Virology Journal, 2016, 13, 5.	3.4	7
102	Replacement of Tyrosine 181 by Phenylalanine in Gentisate 1,2-Dioxygenase I from Pseudomonas alcaligenes NCIMB 9867 Enhances Catalytic Activities. Journal of Bacteriology, 2005, 187, 7543-7545.	2.2	5
103	Characterization of Plaque Variants and the Involvement of Quasi-Species in a Population of EV-A71. Viruses, 2020, 12, 651.	3.3	5
104	Functional Insights into Silymarin as an Antiviral Agent against Enterovirus A71 (EV-A71). International Journal of Molecular Sciences, 2021, 22, 8757.	4.1	5
105	Stability and antiviral activity of SP40 peptide in human serum. Virus Research, 2021, 303, 198456.	2.2	5
106	Characterization of thePac25I Restriction-Modification Genes Isolated from the Endogenous pRA2 Plasmid ofPseudomonas alcaligenesNCIB 9867. Plasmid, 1998, 40, 203-213.	1.4	4
107	Immunogenicity and safety of SARS-CoV-2 vaccines in clinical trials. Frontiers in Bioscience, 2021, 26, 1286.	2.1	4
108	Characterization of significant molecular determinants of virulence of Enterovirus 71 sub-genotype B4 in Rhabdomyosarcoma cells. Virus Research, 2017, 238, 243-252.	2.2	3

#	Article	IF	CITATIONS
109	Tn5563, a transposon encoding putative mercuric ion transport proteins located on plasmid pRA2 of Pseudomonas alcaligenes. FEMS Microbiology Letters, 1998, 165, 253-260.	1.8	3
110	Molecular mechanism of L-SP40 peptide and in vivo efficacy against EV-A71 in neonatal mice. Life Sciences, 2021, 287, 120097.	4.3	3
111	Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules, 2021, 26, 6576.	3.8	3
112	Discovery of B-cell epitopes for development of dengue vaccines and antibody therapeutics. Medical Microbiology and Immunology, 2022, 211, 1-18.	4.8	3
113	Genetic system inPseudomonas alcaligenesNCIB 9867. FEMS Microbiology Letters, 1993, 106, 253-258.	1.8	2
114	Molecular typing of Neisseria gonorrhoeae. Reviews in Medical Microbiology, 1998, 9, 1-8.	0.9	2
115	Detection of Enteroviruses from Clinical Specimens. Methods in Molecular Biology, 2010, 665, 65-77.	0.9	2
116	Identification of amino acid residues essential for catalytic activity of gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIB 9867. FEMS Microbiology Letters, 2001, 204, 141-146.	1.8	2
117	Novel Multiplex Oligonucleotide-Conjugated Bead Suspension Array for Rapid Identification of Enterovirus 71 Subgenogroups. Journal of Clinical Microbiology, 2011, 49, 419-422.	3.9	1
118	Enterovirus-Specific Anti-peptide Antibodies. Methods in Molecular Biology, 2015, 1348, 341-350.	0.9	1
119	Strategies to identify and develop antiviral peptides. Vitamins and Hormones, 2021, 117, 17-46.	1.7	0