Ji Min Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1664857/publications.pdf

Version: 2024-02-01

33	1,295	17 h-index	30
papers	citations		g-index
33	33	33	1785
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A New Approach for Loading Anticancer Drugs Into Mesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Frontiers in Pharmacology, 2018, 9, 1116.	3.5	179
2	Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Scientific Reports, 2017, 7, 15560.	3.3	123
3	A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice. Oncotarget, 2017, 8, 109894-109914.	1.8	96
4	Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials, 2019, 190-191, 38-50.	11.4	87
5	Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells. Frontiers in Immunology, 2018, 9, 824.	4.8	77
6	Novel alternatives to extracellular vesicle-based immunotherapy – exosome mimetics derived from natural killer cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 166-179.	2.8	74
7	In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. Journal of Controlled Release, 2018, 279, 79-88.	9.9	72
8	In vivo Non-invasive Imaging of Radio-Labeled Exosome-Mimetics Derived From Red Blood Cells in Mice. Frontiers in Pharmacology, 2018, 9, 817.	3 . 5	72
9	NTRK and RET fusion–directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. Journal of Clinical Investigation, 2021, 131, .	8.2	62
10	Macrophage-Derived Extracellular Vesicle Promotes Hair Growth. Cells, 2020, 9, 856.	4.1	60
11	Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics, 2021, 11, 6251-6277.	10.0	59
12	Migration of mesenchymal stem cells to tumor xenograft models and <i>in vitro</i> drug delivery by doxorubicin. International Journal of Medical Sciences, 2018, 15, 1051-1061.	2.5	45
13	Natural Killer Cell (NK-92MI)-Based Therapy for Pulmonary Metastasis of Anaplastic Thyroid Cancer in a Nude Mouse Model. Frontiers in Immunology, 2017, 8, 816.	4.8	44
14	Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells, 2021, 39, 266-279.	3 . 2	29
15	Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Experimental Cell Research, 2020, 394, 112146.	2.6	28
16	A Novel Orally Active Inverse Agonist of Estrogen-related Receptor Gamma (ERRγ), DN200434, A Booster of NIS in Anaplastic Thyroid Cancer. Clinical Cancer Research, 2019, 25, 5069-5081.	7.0	24
17	A Novel Tyrosine Kinase Inhibitor Can Augment Radioactive Iodine Uptake Through Endogenous Sodium/Iodide Symporter Expression in Anaplastic Thyroid Cancer. Thyroid, 2020, 30, 501-518.	4.5	18
18	Identification of Angiogenic Cargo in Extracellular Vesicles Secreted from Human Adipose Tissue-Derived Stem Cells and Induction of Angiogenesis In Vitro and In Vivo. Pharmaceutics, 2021, 13, 495.	4. 5	18

#	Article	IF	CITATIONS
19	Regulated Mesenchymal Stem Cells Mediated Colon Cancer Therapy Assessed by Reporter Gene Based Optical Imaging. International Journal of Molecular Sciences, 2018, 19, 1002.	4.1	16
20	White blood cell labeling with Technetium-99m (99mTc) using red blood cell extracellular vesicles-mimetics. Blood Cells, Molecules, and Diseases, 2020, 80, 102375.	1.4	15
21	Extracellular Vesicles Act as Nano-Transporters of Tyrosine Kinase Inhibitors to Revert Iodine Avidity in Thyroid Cancer. Pharmaceutics, 2021, 13, 248.	4.5	14
22	Combination Treatment with the <i>BRAF^{V600E}</i> Inhibitor Vemurafenib and the BH3 Mimetic Navitoclax for <i>BRAF</i> -Mutant Thyroid Carcinoma. Thyroid, 2019, 29, 540-548.	4.5	13
23	Role of M2-like macrophages in the progression of ovarian cancer. Experimental Cell Research, 2020, 395, 112211.	2.6	13
24	Human fibroblastâ€derived extracellular vesicles promote hair growth in cultured human hair follicles. FEBS Letters, 2021, 595, 942-953.	2.8	12
25	Evolution of Mesenchymal Stem Cell Therapy as an Advanced Therapeutic Medicinal Product (ATMP)—An Indian Perspective. Bioengineering, 2022, 9, 111.	3 . 5	9
26	Engineered extracellular vesicle mimetics from macrophage promotes hair growth in mice and promotes human hair follicle growth. Experimental Cell Research, 2021, 409, 112887.	2.6	8
27	Development of an athyroid mouse model using 131I ablation after preparation with a low-iodine diet. Scientific Reports, 2017, 7, 13284.	3.3	7
28	An orally available inverse agonist of estrogen-related receptor gamma showed expanded efficacy for the radioiodine therapy of poorly differentiated thyroid cancer. European Journal of Medicinal Chemistry, 2020, 205, 112501.	5 . 5	7
29	Radioiodine labeling and in vivo trafficking of extracellular vesicles. Scientific Reports, 2021, 11, 5041.	3.3	7
30	Identification of Angiogenic Cargoes in Human Fibroblasts-Derived Extracellular Vesicles and Induction of Wound Healing. Pharmaceuticals, 2022, 15, 702.	3.8	5
31	A new tyrosine kinase inhibitor K905-0266 inhibits proliferation and sphere formation of glioblastoma cancer cells. Journal of Drug Targeting, 2020, 28, 933-938.	4.4	1
32	Targeting GLI1 Transcription Factor for Restoring Iodine Avidity with Redifferentiation in Radioactive-Iodine Refractory Thyroid Cancers. Cancers, 2022, 14, 1782.	3.7	1
33	Treatment Effect of Combining Lenvatinib and Vemurafenib for BRAF Mutated Anaplastic Thyroid Cancer. International Journal of Thyroidology, 2021, 14, 127-134.	0.1	0