Chunghun Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1664468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CREB-Binding Protein and Histone Deacetylase Regulate the Transcriptional Activity of Kaposi's Sarcoma-Associated Herpesvirus Open Reading Frame 50. Journal of Virology, 2001, 75, 1909-1917.	3.4	148
2	clockwork orange Encodes a Transcriptional Repressor Important for Circadian-Clock Amplitude in Drosophila. Current Biology, 2007, 17, 1082-1089.	3.9	141
3	Emerging roles for post-transcriptional regulation in circadian clocks. Nature Neuroscience, 2013, 16, 1544-1550.	14.8	138
4	ATAXIN-2 Activates PERIOD Translation to Sustain Circadian Rhythms in <i>Drosophila</i> . Science, 2013, 340, 875-879.	12.6	136
5	The GIT Family of Proteins Forms Multimers and Associates with the Presynaptic Cytomatrix Protein Piccolo. Journal of Biological Chemistry, 2003, 278, 6291-6300.	3.4	122
6	Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) binds ATF4/CREB2 and inhibits its transcriptional activation activity. Journal of General Virology, 2000, 81, 2645-2652.	2.9	110
7	Functional Dissection of Latency-Associated Nuclear Antigen 1 of Kaposi's Sarcoma-Associated Herpesvirus Involved in Latent DNA Replication and Transcription of Terminal Repeats of the Viral Genome. Journal of Virology, 2002, 76, 10320-10331.	3.4	108
8	The Transcriptional Activity of cAMP Response Element-binding Protein-binding Protein Is Modulated by the Latency Associated Nuclear Antigen of Kaposi's Sarcoma-associated Herpesvirus. Journal of Biological Chemistry, 2001, 276, 31016-31022.	3.4	105
9	The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature, 2011, 470, 399-403.	27.8	79
10	SIFamide and SIFamide Receptor Define a Novel Neuropeptide Signaling to Promote Sleep in Drosophila. Molecules and Cells, 2014, 37, 295-301.	2.6	72
11	Kaposi's Sarcoma-associated Herpesvirus Open Reading Frame 50 Stimulates the Transcriptional Activity of STAT3. Journal of Biological Chemistry, 2002, 277, 6438-6442.	3.4	71
12	Latency-associated Nuclear Antigen of Kaposi's Sarcoma-associated Herpesvirus Functionally Interacts with Heterochromatin Protein 1. Journal of Biological Chemistry, 2003, 278, 7397-7405.	3.4	70
13	LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Molecular Cell, 2017, 66, 129-140.e7.	9.7	59
14	Inhibition of nuclear factor κB activity by viral interferon regulatory factor 3 of Kaposi's sarcoma-associated herpesvirus. Oncogene, 2004, 23, 6146-6155.	5.9	53
15	A sleep-like state in <i>Hydra</i> unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Science Advances, 2020, 6, .	10.3	53
16	Functional Role of CREB-Binding Protein in the Circadian Clock System of Drosophila melanogaster. Molecular and Cellular Biology, 2007, 27, 4876-4890.	2.3	47
17	The Kaposi's Sarcoma-Associated Herpesvirus K8 Protein Interacts with CREB-Binding Protein (CBP) and Represses CBP-Mediated Transcription. Journal of Virology, 2001, 75, 9509-9516.	3.4	45
18	Kaposi's Sarcoma-Associated Herpesvirus Open Reading Frame 50 Represses p53-Induced Transcriptional Activity and Apoptosis. Journal of Virology, 2001, 75, 6245-6248.	3.4	45

Chunghun Lim

#	Article	IF	CITATIONS
19	Mitotic Chromosome-Binding Activity of Latency-Associated Nuclear Antigen 1 Is Required for DNA Replication from Terminal Repeat Sequence of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2004, 78, 7248-7256.	3.4	29
20	Serine metabolism in the brain regulates starvation-induced sleep suppression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7129-7134.	7.1	29
21	Sleep-promoting effects of threonine link amino acid metabolism in Drosophila neuron to GABAergic control of sleep drive. ELife, 2019, 8, .	6.0	27
22	The Viral Oncogene Human Papillomavirus E7 Deregulates Transcriptional Silencing by Brm-related Gene 1 via Molecular Interactions. Journal of Biological Chemistry, 2002, 277, 48842-48848.	3.4	26
23	Ataxinâ€2: A versatile posttranscriptional regulator and its implication in neural function. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1488.	6.4	22
24	ZNF598 co-translationally titrates poly(GR) protein implicated in the pathogenesis of <i>C9ORF72</i> -associated ALS/FTD. Nucleic Acids Research, 2021, 49, 11294-11311.	14.5	21
25	Warming Up Your Tick-Tock. Neuroscientist, 2015, 21, 503-518.	3.5	19
26	DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication. Biochemical and Biophysical Research Communications, 2010, 394, 934-939.	2.1	18
27	Identification of a virus trans-acting regulatory element on the latent DNA replication of Kaposi's sarcoma-associated herpesvirus. Journal of General Virology, 2004, 85, 843-855.	2.9	17
28	Targeted inhibition of Pdp1ε abolishes the circadian behavior of Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2007, 364, 294-300.	2.1	15
29	The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission. Communications Biology, 2020, 3, 174.	4.4	15
30	Rogdi Defines GABAergic Control of a Wake-promoting Dopaminergic Pathway to Sustain Sleep in Drosophila. Scientific Reports, 2017, 7, 11368.	3.3	14
31	Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons. PLoS Genetics, 2019, 15, e1008356.	3.5	13
32	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biology, 2020, 18, e3001002.	5.6	12
33	The crystal structure of human Rogdi provides insight into the causes of Kohlschutter-Tönz Syndrome. Scientific Reports, 2017, 7, 3972.	3.3	9
34	Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Molecules and Cells, 2019, 42, 301-312.	2.6	8
35	CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila. Scientific Reports, 2016, 6, 32113.	3.3	7
36	High-Amplitude Circadian Rhythms in <i>Drosophila</i> Driven by Calcineurin-Mediated Post-translational Control of <i>sarah</i> . Genetics, 2018, 209, 815-828.	2.9	7

Снимсним Lim

#	Article	IF	CITATIONS
37	hnRNP K Supports High-Amplitude D Site-Binding Protein mRNA (<i>Dbp</i> mRNA) Oscillation To Sustain Circadian Rhythms. Molecular and Cellular Biology, 2020, 40, .	2.3	7
38	The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology. BMB Reports, 2021, 54, 439-450.	2.4	7
39	mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth. BMC Biology, 2022, 20, 12.	3.8	6
40	The E3 ubiquitin ligase adaptor <i>Tango10</i> links the core circadian clock to neuropeptide and behavioral rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
41	The pioneer round of translation ensures proper targeting of ER and mitochondrial proteins. Nucleic Acids Research, 2021, 49, 12517-12534.	14.5	3
42	Metabolic flux from the Krebs cycle to glutamate transmission tunes a neural brake on seizure onset. PLoS Genetics, 2021, 17, e1009871.	3.5	3
43	The DOUBLETIME protein kinase regulates phosphorylation of the <i>Drosophila</i> PDP1ε. Journal of Neurochemistry, 2009, 111, 264-273.	3.9	2
44	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
45	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
46	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
47	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
48	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
49	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		Ο
50	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
51	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		Ο