Masanori Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1664359/publications.pdf

Version: 2024-02-01

567281 610901 22 717 15 24 citations h-index g-index papers 28 28 28 975 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visible light-driven water oxidation using a covalently-linked molecular catalyst–sensitizer dyad assembled on a TiO ₂ electrode. Chemical Science, 2016, 7, 1430-1439.	7.4	103
2	Remarkable Dependence of the Final Charge Separation Efficiency on the Donor–Acceptor Interaction in Photoinduced Electron Transfer. Angewandte Chemie - International Edition, 2016, 55, 629-633.	13.8	94
3	Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst. Chemical Communications, 2016, 52, 13702-13705.	4.1	61
4	A Ruthenium Complex–Porphyrin–Fullerene‣inked Molecular Pentad as an Integrative Photosynthetic Model. Angewandte Chemie - International Edition, 2017, 56, 3329-3333.	13.8	51
5	Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges. Nature Communications, 2019, 10, 2559.	12.8	46
6	Synthesis of graphene mesosponge <i>via</i> catalytic methane decomposition on magnesium oxide. Journal of Materials Chemistry A, 2021, 9, 14296-14308.	10.3	42
7	Artificial Molecular Photosynthetic Systems: Towards Efficient Photoelectrochemical Water Oxidation. ChemPlusChem, 2016, 81, 1028-1044.	2.8	40
8	Highly Diastereoselective Construction of Acyclic Systems with Two Adjacent Quaternary Stereocenters by Allylation of Ketones. Angewandte Chemie - International Edition, 2012, 51, 7263-7266.	13.8	32
9	Probing the Dipolar Coupling in a Heterospin Endohedral Fullerene–Phthalocyanine Dyad. Journal of the American Chemical Society, 2016, 138, 1313-1319.	13.7	29
10	Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catalysis, 2022, 12, 2045-2051.	11.2	29
11	Carbon-rich materials with three-dimensional ordering at the angstrom level. Chemical Science, 2020, 11, 5866-5873.	7.4	28
12	Effect of carbon surface on degradation of supercapacitors in a negative potential range. Journal of Power Sources, 2020, 457, 228042.	7.8	26
13	Slow Charge Recombination and Enhanced Photoelectrochemical Properties of Diazaporphyrin-Fullerene Linked Dyad. Journal of Physical Chemistry C, 2014, 118, 1808-1820.	3.1	17
14	Nano-Confinement of Insulating Sulfur in the Cathode Composite of All-Solid-State Li–S Batteries Using Flexible Carbon Materials with Large Pore Volumes. ACS Applied Materials & amp; Interfaces, 2021, 13, 38613-38622.	8.0	16
15	A Ruthenium Complex–Porphyrin–Fullerene‣inked Molecular Pentad as an Integrative Photosynthetic Model. Angewandte Chemie, 2017, 129, 3377-3381.	2.0	15
16	Synthesis of Ordered Carbonaceous Framework with Microporosity from Porphyrin with Ethynyl Groups. Chemistry Letters, 2020, 49, 619-623.	1.3	14
17	Iron porphyrin-derived ordered carbonaceous frameworks. Catalysis Today, 2021, 364, 164-171.	4.4	12
18	Pyreneâ€Thiolâ€modified Pd Nanoparticles on Carbon Support: Kinetic Control by Steric Hinderance and Improved Stability by the Catalystâ€Support Interaction. ChemCatChem, 2020, 12, 5880-5887.	3.7	11

#	Article	lF	CITATION
19	Force-responsive ordered carbonaceous frameworks synthesized from Ni-porphyrin. Chemical Communications, 2021, 57, 6007-6010.	4.1	10
20	Porous nanographene formation on \hat{I}^3 -alumina nanoparticles <i>via</i> transition-metal-free methane activation. Chemical Science, 2022, 13, 3140-3146.	7.4	8
21	An identification method of nonlinear systems by volterra series. Electronics and Communications in Japan, 1988, 71, 39-51.	0.1	1
22	Probing the Entropic Effect in Molecular Noncovalent Interactions between Resinâ€Bound Polybrominated Arenes and Small Substrates. ChemPlusChem, 2018, 83, 820-824.	2.8	1