
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1664144/publications.pdf Version: 2024-02-01

ΝΑΙΙΙ Ι CΗΙΝΙΚ

#	Article	IF	CITATIONS
1	Radical Ligands Confer Nobility on Base-Metal Catalysts. Science, 2010, 327, 794-795.	6.0	810
2	Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. Journal of the American Chemical Society, 2004, 126, 13794-13807.	6.6	765
3	Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Accounts of Chemical Research, 2015, 48, 1687-1695.	7.6	604
4	Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nature Reviews Chemistry, 2018, 2, 15-34.	13.8	591
5	Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature, 2004, 427, 527-530.	13.7	572
6	Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science, 2012, 335, 567-570.	6.0	477
7	Electronic Structure of Bis(imino)pyridine Iron Dichloride, Monochloride, and Neutral Ligand Complexes:Â A Combined Structural, Spectroscopic, and Computational Study. Journal of the American Chemical Society, 2006, 128, 13901-13912.	6.6	457
8	Preface: Forum on Redox-Active Ligands. Inorganic Chemistry, 2011, 50, 9737-9740.	1.9	367
9	Cobalt Precursors for High-Throughput Discovery of Base Metal Asymmetric Alkene Hydrogenation Catalysts. Science, 2013, 342, 1076-1080.	6.0	346
10	Bis(imino)pyridine Cobalt-Catalyzed Alkene Isomerization–Hydroboration: A Strategy for Remote Hydrofunctionalization with Terminal Selectivity. Journal of the American Chemical Society, 2013, 135, 19107-19110.	6.6	337
11	Iron-Catalyzed [2ï€ + 2ï€] Cycloaddition of α,ï‰-Dienes: The Importance of Redox-Active Supporting Ligands. Journal of the American Chemical Society, 2006, 128, 13340-13341.	6.6	314
12	Enantiopure <i>C</i> ₁ -Symmetric Bis(imino)pyridine Cobalt Complexes for Asymmetric Alkene Hydrogenation. Journal of the American Chemical Society, 2012, 134, 4561-4564.	6.6	313
13	Getting Down to Earth: The Renaissance of Catalysis with Abundant Metals. Accounts of Chemical Research, 2015, 48, 2495-2495.	7.6	311
14	Iron-catalysed tritiation of pharmaceuticals. Nature, 2016, 529, 195-199.	13.7	311
15	Using natureâ \in ™s blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	6.0	306
16	Cobalt-Catalyzed C–H Borylation. Journal of the American Chemical Society, 2014, 136, 4133-4136.	6.6	276
17	Iron-Catalyzed, Hydrogen-Mediated Reductive Cyclization of 1,6-Enynes and Diynes: Evidence for Bis(imino)pyridine Ligand Participation. Journal of the American Chemical Society, 2009, 131, 8772-8774.	6.6	246
18	Cobalt Catalyzed <i>Z</i> -Selective Hydroboration of Terminal Alkynes and Elucidation of the Origin of Selectivity. Journal of the American Chemical Society, 2015, 137, 5855-5858.	6.6	229

#	Article	IF	CITATIONS
19	Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science, 2018, 360, 888-893.	6.0	219
20	High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catalysis, 2012, 2, 1760-1764.	5.5	203
21	Cobalt-Catalyzed Benzylic Borylation: Enabling Polyborylation and Functionalization of Remote, Unactivated C(sp ³)–H Bonds. Journal of the American Chemical Society, 2016, 138, 766-769.	6.6	200
22	Bis(imino)pyridine Iron Complexes for Aldehyde and Ketone Hydrosilylation. Organic Letters, 2008, 10, 2789-2792.	2.4	198
23	Synthesis and Hydrogenation of Bis(imino)pyridine Iron Imides. Journal of the American Chemical Society, 2006, 128, 5302-5303.	6.6	197
24	Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. Journal of the American Chemical Society, 2014, 136, 12108-12118.	6.6	196
25	Alkene Isomerization–Hydroboration Promoted by Phosphine-Ligated Cobalt Catalysts. Organic Letters, 2015, 17, 2716-2719.	2.4	196
26	Enantiopure Pyridine Bis(oxazoline) "Pybox―and Bis(oxazoline) "Box―Iron Dialkyl Complexes: Comparison to Bis(imino)pyridine Compounds and Application to Catalytic Hydrosilylation of Ketones. Organometallics, 2009, 28, 3928-3940.	1.1	193
27	Catalytic Hydrogenation Activity and Electronic Structure Determination of Bis(arylimidazol-2-ylidene)pyridine Cobalt Alkyl and Hydride Complexes. Journal of the American Chemical Society, 2013, 135, 13168-13184.	6.6	192
28	Arene Coordination in Bis(imino)pyridine Iron Complexes:Â Identification of Catalyst Deactivation Pathways in Iron-Catalyzed Hydrogenation and Hydrosilation. Organometallics, 2006, 25, 4269-4278.	1.1	183
29	Highly Selective Bis(imino)pyridine Iron-Catalyzed Alkene Hydroboration. Organic Letters, 2013, 15, 2680-2683.	2.4	182
30	Functional Group Tolerance and Substrate Scope in Bis(imino)pyridine Iron Catalyzed Alkene Hydrogenation. Organometallics, 2008, 27, 1470-1478.	1.1	181
31	Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nature Chemistry, 2010, 2, 30-35.	6.6	181
32	Cobalt-Catalyzed Enantioselective Hydrogenation of Minimally Functionalized Alkenes: Isotopic Labeling Provides Insight into the Origin of Stereoselectivity and Alkene Insertion Preferences. Journal of the American Chemical Society, 2016, 138, 3314-3324.	6.6	179
33	Synthesis and Molecular and Electronic Structures of Reduced Bis(imino)pyridine Cobalt Dinitrogen Complexes: Ligand versus Metal Reduction. Journal of the American Chemical Society, 2010, 132, 1676-1684.	6.6	175
34	Alkene Hydrosilylation Using Tertiary Silanes with α-Diimine Nickel Catalysts. Redox-Active Ligands Promote a Distinct Mechanistic Pathway from Platinum Catalysts. ACS Catalysis, 2016, 6, 4105-4109.	5.5	173
35	Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes. Science, 2015, 349, 960-963.	6.0	171
36	Coordination-induced weakening of ammonia, water, and hydrazine X–H bonds in a molybdenum complex. Science, 2016, 354, 730-733.	6.0	165

#	Article	IF	CITATIONS
37	Nickel-Catalyzed Asymmetric Alkene Hydrogenation of α,β-Unsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation. Journal of the American Chemical Society, 2016, 138, 3562-3569.	6.6	165
38	Low-Valent α-Diimine Iron Complexes for Catalytic Olefin Hydrogenation. Organometallics, 2005, 24, 5518-5527.	1.1	163
39	High-Activity Cobalt Catalysts for Alkene Hydroboration with Electronically Responsive Terpyridine and α-Diimine Ligands. ACS Catalysis, 2015, 5, 622-626.	5.5	163
40	Synthesis and Electronic Structure of Cationic, Neutral, and Anionic Bis(imino)pyridine Iron Alkyl Complexes: Evaluation of Redox Activity in Single-Component Ethylene Polymerization Catalysts. Journal of the American Chemical Society, 2010, 132, 15046-15059.	6.6	155
41	Bis(imino)pyridine Iron(II) Alkyl Cations for Olefin Polymerization. Journal of the American Chemical Society, 2005, 127, 9660-9661.	6.6	154
42	Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chemical Reviews, 2020, 120, 5637-5681.	23.0	154
43	Four-Coordinate Cobalt Pincer Complexes: Electronic Structure Studies and Ligand Modification by Homolytic and Heterolytic Pathways. Journal of the American Chemical Society, 2014, 136, 9211-9224.	6.6	152
44	Bis(diisopropylphosphino)pyridine Iron Dicarbonyl, Dihydride, and Silyl Hydride Complexes. Inorganic Chemistry, 2006, 45, 7252-7260.	1.9	150
45	Selective, Catalytic Carbonâ~ Carbon Bond Activation and Functionalization Promoted by Late Transition Metal Catalysts. Journal of the American Chemical Society, 2003, 125, 886-887.	6.6	142
46	Iron-Catalyzed Intermolecular [2Ï€ + 2Ï€] Cycloaddition. Journal of the American Chemical Society, 2011, 133, 8858-8861.	6.6	142
47	Synthesis, Electronic Structure, and Alkene Hydrosilylation Activity of Terpyridine and Bis(imino)pyridine Iron Dialkyl Complexes. Organometallics, 2012, 31, 4886-4893.	1.1	139
48	Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. ACS Catalysis, 2016, 6, 2632-2636.	5.5	137
49	Cobalt-Catalyzed 1,1-Diboration of Terminal Alkynes: Scope, Mechanism, and Synthetic Applications. Journal of the American Chemical Society, 2017, 139, 3868-3875.	6.6	132
50	Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Transactions, 2007, , 16-25.	1.6	131
51	Oxidative Addition of Carbon–Carbon Bonds with a Redox-Active Bis(imino)pyridine Iron Complex. Journal of the American Chemical Society, 2012, 134, 17125-17137.	6.6	131
52	Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives Inorganic Chemistry, 2012, 51, 3770-3785.	1.9	126
53	Carbon–Carbon Bond Formation in a Weak Ligand Field: Leveraging Open‧hell Firstâ€Row Transitionâ€Metal Catalysts. Angewandte Chemie - International Edition, 2017, 56, 5170-5181.	7.2	126
54	Synthesis of Aryl-Substituted Bis(imino)pyridine Iron Dinitrogen Complexes. Inorganic Chemistry, 2010, 49, 2782-2792.	1.9	124

#	Article	IF	CITATIONS
55	Synthesis and Electronic Structure of Bis(imino)pyridine Iron Metallacyclic Intermediates in Iron-Catalyzed Cyclization Reactions. Journal of the American Chemical Society, 2013, 135, 4862-4877.	6.6	122
56	High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane. ACS Catalysis, 2012, 2, 2169-2172.	5.5	121
57	Square Planar vs Tetrahedral Geometry in Four Coordinate Iron(II) Complexes. Inorganic Chemistry, 2005, 44, 3103-3111.	1.9	119
58	Bis(phosphine)cobalt Dialkyl Complexes for Directed Catalytic Alkene Hydrogenation. Journal of the American Chemical Society, 2014, 136, 13178-13181.	6.6	117
59	Carbon Dioxide Hydrosilylation Promoted by Cobalt Pincer Complexes. Inorganic Chemistry, 2014, 53, 9463-9465.	1.9	116
60	Cobalt-Catalyzed C(sp ²)-H Borylation: Mechanistic Insights Inspire Catalyst Design. Journal of the American Chemical Society, 2016, 138, 10645-10653.	6.6	116
61	Photolysis and Thermolysis of Bis(imino)pyridine Cobalt Azides: Câ^'H Activation from Putative Cobalt Nitrido Complexes. Journal of the American Chemical Society, 2010, 132, 16343-16345.	6.6	114
62	Neutral-Ligand Complexes of Bis(imino)pyridine Iron:  Synthesis, Structure, and Spectroscopy. Inorganic Chemistry, 2007, 46, 7055-7063.	1.9	111
63	Synthesis, Reactivity, and Solid State Structures of Four-Coordinate Iron(II) and Manganese(II) Alkyl Complexes. Organometallics, 2004, 23, 237-246.	1.1	109
64	Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. Journal of the American Chemical Society, 2019, 141, 9106-9123.	6.6	109
65	C(sp ²)–H Borylation of Fluorinated Arenes Using an Air-Stable Cobalt Precatalyst: Electronically Enhanced Site Selectivity Enables Synthetic Opportunities. Journal of the American Chemical Society, 2017, 139, 2825-2832.	6.6	107
66	Square planar bis(imino)pyridine iron halide and alkyl complexes. Chemical Communications, 2005, , 3406.	2.2	104
67	Benzyltriboronates: Building Blocks for Diastereoselective Carbon–Carbon Bond Formation. Journal of the American Chemical Society, 2017, 139, 2589-2592.	6.6	99
68	Reduced <i>N</i> -Alkyl Substituted Bis(imino)pyridine Cobalt Complexes: Molecular and Electronic Structures for Compounds Varying by Three Oxidation States. Inorganic Chemistry, 2010, 49, 6110-6123.	1.9	94
69	Synthesis and Electronic Structure Determination of <i>N</i> -Alkyl-Substituted Bis(imino)pyridine Iron Imides Exhibiting Spin Crossover Behavior. Journal of the American Chemical Society, 2011, 133, 17353-17369.	6.6	94
70	Ni(l)–X Complexes Bearing a Bulky α-Diimine Ligand: Synthesis, Structure, and Superior Catalytic Performance in the Hydrogen Isotope Exchange in Pharmaceuticals. Journal of the American Chemical Society, 2019, 141, 5034-5044.	6.6	92
71	Iron Diazoalkane Chemistry:Â Nâ^'N Bond Hydrogenation and Intramolecular Câ^'H Activation. Journal of the American Chemical Society, 2007, 129, 7212-7213.	6.6	91
72	Nitrogen–Carbon Bond Formation from N2 and CO2 Promoted by a Hafnocene Dinitrogen Complex Yields a Substituted Hydrazine. Angewandte Chemie - International Edition, 2007, 46, 2858-2861.	7.2	91

#	Article	IF	CITATIONS
73	Carbonâ^'Oxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds: Catalyst Deactivation Pathways and Observation of Acyl Câ^'O Bond Cleavage in Esters. Organometallics, 2008, 27, 6264-6278.	1.1	90
74	On the Origin of Dinitrogen Hydrogenation Promoted by [(η5-C5Me4H)2Zr]2(μ2,η2,η2,η2-N2). Journal of the American Chemical Society, 2004, 126, 14326-14327.	6.6	89
75	Kinetics and Mechanism of N2Hydrogenation in Bis(cyclopentadienyl) Zirconium Complexes and Dinitrogen Functionalization by 1,2-Addition of a Saturated Câ^'H Bond. Journal of the American Chemical Society, 2005, 127, 14051-14061.	6.6	88
76	Synthesis of Bis(imino)pyridine Iron Di- and Monoalkyl Complexes: Stability Differences between FeCH ₂ SiMe ₃ and FeCH ₂ CMe ₃ Derivatives. Organometallics, 2008, 27, 109-118.	1.1	87
77	Cobalt-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carboxylic Acids by Homolytic H ₂ Cleavage. Journal of the American Chemical Society, 2020, 142, 5272-5281.	6.6	87
78	Dinitrogen Activation by Titanium Sandwich Complexes. Journal of the American Chemical Society, 2004, 126, 14688-14689.	6.6	85
79	Evaluation of Cobalt Complexes Bearing Tridentate Pincer Ligands for Catalytic C–H Borylation. Organometallics, 2015, 34, 1307-1320.	1.1	85
80	Nâ^'C Bond Formation Promoted by a Hafnocene Dinitrogen Complex:Â Comparison of Zirconium and Hafnium Congeners. Journal of the American Chemical Society, 2006, 128, 10696-10697.	6.6	83
81	Carbon Monoxide-Induced Dinitrogen Cleavage with Group 4 Metallocenes: Reaction Scope and Coupling to Nâ [°] 'H Bond Formation and CO Deoxygenation. Journal of the American Chemical Society, 2010, 132, 10553-10564.	6.6	83
82	Cobalt-Catalyzed Stereoretentive Hydrogen Isotope Exchange of C(sp ³)–H Bonds. ACS Catalysis, 2017, 7, 5674-5678.	5.5	83
83	N2Hydrogenation Promoted by a Side-On Bound Hafnocene Dinitrogen Complex. Organometallics, 2006, 25, 1021-1027.	1.1	82
84	Cobalt-Catalyzed [2Ï€ + 2Ï€] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates. Journal of the American Chemical Society, 2015, 137, 7903-7914.	6.6	79
85	Bis(imino)pyridine Iron Alkyls Containing β-Hydrogens: Synthesis, Evaluation of Kinetic Stability, and Decomposition Pathways Involving Chelate Participation. Journal of the American Chemical Society, 2008, 130, 11631-11640.	6.6	78
86	Synthesis, electronic structure and reactivity of bis(imino)pyridine iron carbene complexes: evidence for a carbene radical. Chemical Science, 2014, 5, 1168-1174.	3.7	78
87	Ammonia Activation, H ₂ Evolution and Nitride Formation from a Molybdenum Complex with a Chemically and Redox Noninnocent Ligand. Journal of the American Chemical Society, 2017, 139, 6110-6113.	6.6	78
88	Oxidation and Reduction of Bis(imino)pyridine Iron Dinitrogen Complexes: Evidence for Formation of a Chelate Trianion Inorganic Chemistry, 2013, 52, 635-646.	1.9	77
89	Expanding Boundaries: N ₂ Cleavage and Functionalization beyond Early Transition Metals. Angewandte Chemie - International Edition, 2016, 55, 7892-7896.	7.2	76
90	Selective [1,4]-Hydrovinylation of 1,3-Dienes with Unactivated Olefins Enabled by Iron Diimine Catalysts. Journal of the American Chemical Society, 2018, 140, 3443-3453.	6.6	75

#	Article	IF	CITATIONS
91	Insight into Transmetalation Enables Cobalt-Catalyzed Suzuki–Miyaura Cross Coupling. ACS Central Science, 2016, 2, 935-942.	5.3	74
92	Dinitrogen Silylation and Cleavage with a Hafnocene Complex. Journal of the American Chemical Society, 2011, 133, 10406-10409.	6.6	73
93	Cobalt-Catalyzed C(sp ²)–H Borylation with an Air-Stable, Readily Prepared Terpyridine Cobalt(II) Bis(acetate) Precatalyst. Organometallics, 2017, 36, 142-150.	1.1	73
94	Synthesis of a Base-Free Hafnium Nitride from N ₂ Cleavage: A Versatile Platform for Dinitrogen Functionalization. Journal of the American Chemical Society, 2013, 135, 11373-11383.	6.6	71
95	Oxidative addition and C–H activation chemistry with a PNP pincer-ligated cobalt complex. Chemical Science, 2014, 5, 1956-1960.	3.7	71
96	Carboxylation of an <i>ansa</i> -Zirconocene Dinitrogen Complex:  Regiospecific Hydrazine Synthesis from N ₂ and CO ₂ . Journal of the American Chemical Society, 2008, 130, 4248-4249.	6.6	69
97	Synthesis, Electronic Structure, and Catalytic Activity of Reduced Bis(aldimino)pyridine Iron Compounds: Experimental Evidence for Ligand Participation. Inorganic Chemistry, 2011, 50, 3159-3169.	1.9	69
98	Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. Journal of the American Chemical Society, 2016, 138, 13379-13389.	6.6	69
99	Electronic Effects in 4-Substituted Bis(imino)pyridines and the Corresponding Reduced Iron Compounds. Organometallics, 2012, 31, 2275-2285.	1.1	68
100	Air-Stable α-Diimine Nickel Precatalysts for the Hydrogenation of Hindered, Unactivated Alkenes. ACS Catalysis, 2018, 8, 342-348.	5.5	68
101	Bis(imino)pyridine Ligand Deprotonation Promoted by a Transient Iron Amide. Inorganic Chemistry, 2006, 45, 2-4.	1.9	67
102	Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations. Angewandte Chemie - International Edition, 2011, 50, 8143-8147.	7.2	67
103	Ammonia Synthesis by Hydrogenolysis of Titanium–Nitrogen Bonds Using Proton Coupled Electron Transfer. Journal of the American Chemical Society, 2015, 137, 3498-3501.	6.6	65
104	Hydrogenation of <i>N</i> -Heteroarenes Using Rhodium Precatalysts: Reductive Elimination Leads to Formation of Multimetallic Clusters. Journal of the American Chemical Society, 2019, 141, 17900-17908.	6.6	65
105	Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds. Angewandte Chemie - International Edition, 2019, 58, 9194-9198.	7.2	65
106	Reversible Carbon–Carbon Bond Formation Induced by Oxidation and Reduction at a Redox-Active Cobalt Complex. Inorganic Chemistry, 2013, 52, 5403-5417.	1.9	64
107	Nâ~`N Bond Cleavage in Diazoalkanes by a Bis(imino)pyridine Iron Complex. Journal of the American Chemical Society, 2009, 131, 36-37.	6.6	60
108	Synthesis and Hydrogenation Activity of Iron Dialkyl Complexes with Chiral Bidentate Phosphines. Organometallics, 2014, 33, 5781-5790.	1.1	59

#	Article	IF	CITATIONS
109	Site-Selective Nickel-Catalyzed Hydrogen Isotope Exchange in <i>N</i> -Heterocycles and Its Application to the Tritiation of Pharmaceuticals. ACS Catalysis, 2018, 8, 10210-10218.	5.5	58
110	Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. Journal of the American Chemical Society, 2019, 141, 8557-8573.	6.6	58
111	Synthesis and Electronic Structure of Reduced Bis(imino)pyridine Manganese Compounds. European Journal of Inorganic Chemistry, 2012, 2012, 535-545.	1.0	57
112	Synthesis and Ligand Modification Chemistry of a Molybdenum Dinitrogen Complex: Redox and Chemical Activity of a Bis(imino)pyridine Ligand. Angewandte Chemie - International Edition, 2014, 53, 14211-14215.	7.2	57
113	Functionalization of Hafnium Oxamidide Complexes Prepared from CO-Induced N ₂ Cleavage. Journal of the American Chemical Society, 2010, 132, 15340-15350.	6.6	55
114	A Boron Activating Effect Enables Cobalt-Catalyzed Asymmetric Hydrogenation of Sterically Hindered Alkenes. Journal of the American Chemical Society, 2020, 142, 3923-3930.	6.6	55
115	Studies into the Mechanism of CO-Induced N ₂ Cleavage Promoted by an <i>Ansa</i> -Hafnocene Complex and C–C Bond Formation from an Observed Intermediate. Journal of the American Chemical Society, 2012, 134, 3377-3386.	6.6	54
116	Mechanistic Studies of Cobalt-Catalyzed C(sp ²)–H Borylation of Five-Membered Heteroarenes with Pinacolborane. ACS Catalysis, 2017, 7, 4366-4371.	5.5	51
117	Iron-catalysed synthesis and chemical recycling of telechelic 1,3-enchained oligocyclobutanes. Nature Chemistry, 2021, 13, 156-162.	6.6	51
118	Mono(dinitrogen) and Carbon Monoxide Adducts of Bis(cyclopentadienyl) Titanium Sandwiches. Journal of the American Chemical Society, 2006, 128, 6018-6019.	6.6	50
119	Structure and Reactivity of a Hafnocene μâ€Nitrido Prepared From Dinitrogen Cleavage. Angewandte Chemie - International Edition, 2012, 51, 5213-5216.	7.2	50
120	Terpyridine Molybdenum Dinitrogen Chemistry: Synthesis of Dinitrogen Complexes That Vary by Five Oxidation States. Inorganic Chemistry, 2016, 55, 3117-3127.	1.9	49
121	N–N Bond Cleavage of 1,2-Diarylhydrazines and N–H Bond Formation via H-Atom Transfer in Vanadium Complexes Supported by a Redox-Active Ligand. Journal of the American Chemical Society, 2014, 136, 12099-12107.	6.6	46
122	Electronic Structure Determination of Pyridine N-Heterocyclic Carbene Iron Dinitrogen Complexes and Neutral Ligand Derivatives. Organometallics, 2014, 33, 5423-5433.	1.1	45
123	Side-on Dinitrogen Complexes of Titanocenes with Disubstituted Cyclopentadienyl Ligands: Synthesis, Structure, and Spectroscopic Characterization. Organometallics, 2012, 31, 3672-3682.	1.1	44
124	Cobalt-Catalyzed Borylation of Fluorinated Arenes: Thermodynamic Control of C(sp ²)-H Oxidative Addition Results in <i>ortho</i> -to-Fluorine Selectivity. Journal of the American Chemical Society, 2019, 141, 15378-15389.	6.6	44
125	Ketone Synthesis from Benzyldiboronates and Esters: Leveraging α-Boryl Carbanions for Carbon–Carbon Bond Formation. Journal of the American Chemical Society, 2020, 142, 2429-2437.	6.6	44
126	Synthesis and Characterization of Zirconium and Iron Complexes Containing Substituted Indenyl Ligands:Â Evaluation of Steric and Electronic Parameters. Organometallics, 2004, 23, 5332-5346.	1.1	43

PAUL J CHIRIK

#	Article	IF	CITATIONS
127	N–H Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 4795-4799.	6.6	43
128	An Editorial About Elemental Analysis. Organometallics, 2016, 35, 3255-3256.	1.1	40
129	Remote, Diastereoselective Cobalt-Catalyzed Alkene Isomerization–Hydroboration: Access to Stereodefined 1,3-Difunctionalized Indanes. ACS Catalysis, 2019, 9, 9034-9044.	5.5	40
130	Addition of Methyl Triflate to a Hafnocene Dinitrogen Complex: Stepwise N ₂ Methylation and Conversion to a Hafnocene Hydrazonato Compound. Journal of the American Chemical Society, 2009, 131, 14903-14912.	6.6	39
131	Interconversion of Molybdenum Imido and Amido Complexes by Protonâ€Coupled Electron Transfer. Angewandte Chemie - International Edition, 2018, 57, 2224-2228.	7.2	39
132	Cobalt Pincer Complexes in Catalytic C–H Borylation: The Pincer Ligand Flips Rather Than Dearomatizes. ACS Catalysis, 2018, 8, 10606-10618.	5.5	39
133	[4 + 4]-cycloaddition of isoprene for the production of high-performance bio-based jet fuel. Green Chemistry, 2019, 21, 5616-5623.	4.6	36
134	Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed [2 + 2] Cycloaddition of Alkenes. Journal of the American Chemical Society, 2020, 142, 5314-5330.	6.6	36
135	Synthesis of Iron Hydride Complexes Relevant to Hydrogen Isotope Exchange in Pharmaceuticals. Organometallics, 2017, 36, 4341-4343.	1.1	35
136	Pyridine(diimine) Molybdenum-Catalyzed Hydrogenation of Arenes and Hindered Olefins: Insights into Precatalyst Activation and Deactivation Pathways. ACS Catalysis, 2018, 8, 5276-5285.	5.5	35
137	Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways. ACS Catalysis, 2021, 11, 1351-1360.	5.5	34
138	Functionalization of Elemental Phosphorus with [Zr(5-C5Me5)(5-C5H4tBu)H2]2. Angewandte Chemie - International Edition, 2002, 41, 3463-3465.	7.2	33
139	Cobalt-catalysed alkene hydrogenation: a metallacycle can explain the hydroxyl activating effect and the diastereoselectivity. Chemical Science, 2018, 9, 4977-4982.	3.7	31
140	Iron-Mediated Coupling of Carbon Dioxide and Ethylene: Macrocyclic Metallalactones Enable Access to Various Carboxylates. Journal of the American Chemical Society, 2018, 140, 11589-11593.	6.6	31
141	Synthesis, Electronic Structure, and Reactivity of a Planar Fourâ€Coordinate, Cobalt–Imido Complex. Angewandte Chemie - International Edition, 2021, 60, 14376-14380.	7.2	31
142	N–H Group Transfer and Oxidative Addition Chemistry Promoted by Isolable Bis(cyclopentadienyl)titanium Sandwich Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 2677-2685.	1.0	30
143	Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes. Journal of the American Chemical Society, 2022, 144, 11203-11214.	6.6	30
144	Alkyl Substituent Effects on Reductive Elimination Reactions in Zirconocene Alkyl Hydride Complexes. Manipulation of the Alkyl Steric Environment Allows the Synthesis of a Zirconocene Dinitrogen Complex. Organometallics, 2003, 22, 2797-2805.	1.1	29

#	Article	IF	CITATIONS
145	Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds. Angewandte Chemie, 2019, 131, 9292-9296.	1.6	28
146	C(sp ²)–H Activation with Pyridine Dicarbene Iron Dialkyl Complexes: Hydrogen Isotope Exchange of Arenes Using Benzene- <i>d</i> ₆ as a Deuterium Source. ACS Catalysis, 2020, 10, 8640-8647.	5.5	28
147	Di- and Tetrametallic Hafnocene Oxamidides Prepared from CO-Induced N ₂ Bond Cleavage and Thermal Rearrangement to Hafnocene Cyanide Derivatives. Organometallics, 2012, 31, 6278-6287.	1.1	27
148	Determining and Understanding N-H Bond Strengths in Synthetic Nitrogen Fixation Cycles. Topics in Organometallic Chemistry, 2017, , 1-21.	0.7	27
149	Oxidative Addition of Dihydrogen, Boron Compounds, and Aryl Halides to a Cobalt(I) Cation Supported by a Strong-Field Pincer Ligand. Organometallics, 2019, 38, 1081-1090.	1.1	27
150	Dinitrogen Coupling to a Terpyridine-Molybdenum Chromophore Is Switched on by Fermi Resonance. CheM, 2019, 5, 402-416.	5.8	27
151	Exploring the Alcohol Stability of Bis(phosphine) Cobalt Dialkyl Precatalysts in Asymmetric Alkene Hydrogenation. Organometallics, 2019, 38, 149-156.	1.1	26
152	Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nature Chemistry, 2021, 13, 969-976.	6.6	26
153	Kohlenstoffâ€Kohlenstoffâ€Bindungsbildung in einem schwachen Ligandenfeld: Nutzung von Openâ€Shellâ€Ãœbergangsmetallkatalysatoren der ersten Übergangsperiode. Angewandte Chemie, 2017, 129, 5252-5265.	1.6	25
154	Synthesis and Electronic Structure of Iron Borate Betaine Complexes as a Route to Single-Component Iron Ethylene Oligomerization and Polymerization Catalysts. Organometallics, 2015, 34, 5615-5623.	1.1	23
155	Cobalt-Catalyzed C(sp ²)–C(sp ³) Suzuki–Miyaura Cross Coupling. Organic Letters, 2021, 23, 625-630.	2.4	23
156	A Tutorial on Selectivity Determination in C(sp ²)–H Oxidative Addition of Arenes by Transition Metal Complexes. Organometallics, 2021, 40, 813-831.	1.1	23
157	1,2-Addition versus Ïf-Bond Metathesis Reactions in Transient Bis(cyclopentadienyl)zirconium Imides: Evidence for a d0 Dihydrogen Complex. Organometallics, 2008, 27, 872-879.	1.1	22
158	A fresh approach to synthesizing ammonia from air and water. Nature, 2019, 568, 464-466.	13.7	22
159	Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. Journal of the American Chemical Society, 2020, 142, 9518-9524.	6.6	22
160	Synthesis and Reactivity of Reduced α-Diimine Nickel Complexes Relevant to Acrylic Acid Synthesis. Organometallics, 2018, 37, 3389-3393.	1.1	21
161	Development of Cobalt Catalysts for the <i>meta</i> -Selective C(sp ²)–H Borylation of Fluorinated Arenes. Journal of the American Chemical Society, 2022, 144, 6465-6474.	6.6	21
162	N–H and N–C Bond Formation with an N ₂ -Derived Dihafnium μ-Nitrido Complex. Organometallics, 2014, 33, 3727-3737.	1.1	20

#	Article	IF	CITATIONS
163	Grenzen erweitern: Spaltung und Funktionalisierung von N ₂ jenseits von frühen Übergangsmetallen. Angewandte Chemie, 2016, 128, 8022-8026.	1.6	20
164	C(sp ²)–H Borylation of Heterocycles by Well-Defined Bis(silylene)pyridine Cobalt(III) Precatalysts: Pincer Modification, C(sp ²)–H Activation, and Catalytically Relevant Intermediates. Organometallics, 2020, 39, 2763-2773.	1.1	20
165	Dinitrogen Borylation with Group 4 Metallocene Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 3907-3915.	1.0	19
166	Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C–H Functionalization. Journal of the American Chemical Society, 2022, 144, 4530-4540.	6.6	19
167	Carbonâ^'Hydrogen Bond Activation with a Cyclometalated Zirconocene Hydride:Â Mechanistic Differences between Arene and Alkane Reductive Elimination. Organometallics, 2006, 25, 1092-1100.	1.1	18
168	Synthesis and Reactivity of Pyridine(diimine) Molybdenum Olefin Complexes: Ethylene Dimerization and Alkene Dehydrogenation. Organometallics, 2017, 36, 4215-4223.	1.1	18
169	Synthesis and Electronic Structure Diversity of Pyridine(diimine)iron Tetrazene Complexes. Inorganic Chemistry, 2018, 57, 9634-9643.	1.9	18
170	Proton-Coupled Electron Transfer to a Molybdenum Ethylene Complex Yields a β-Agostic Ethyl: Structure, Dynamics and Mechanism. Journal of the American Chemical Society, 2018, 140, 13817-13826.	6.6	18
171	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	1.3	18
172	Insights into Activation of Cobalt Preâ€Catalysts for C(<i>sp</i> ²)â^'H Functionalization. Israel Journal of Chemistry, 2017, 57, 1032-1036.	1.0	17
173	Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: stepwise proton coupled electron transfer is preferred over hydrogen atom transfer. Chemical Communications, 2019, 55, 5595-5598.	2.2	16
174	Cobalt-Catalyzed C(sp ²)–C(sp ³) Suzuki–Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands. ACS Catalysis, 2022, 12, 1905-1918.	5.5	16
175	Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. , 2022, 1, 297-303.		16
176	An FeVI Nitride: There Is Plenty of Room at the Top!. Angewandte Chemie - International Edition, 2006, 45, 6956-6959.	7.2	15
177	Synthesis, Structure, and Hydrogenolysis of Pyridine Dicarbene Iron Dialkyl Complexes. Organometallics, 2019, 38, 3159-3168.	1.1	15
178	Pyridine(diimine) Iron Diene Complexes Relevant to Catalytic [2+2] ycloaddition Reactions. Advanced Synthesis and Catalysis, 2020, 362, 404-416.	2.1	15
179	Synthesis and Reactivity of Organometallic Intermediates Relevant to Cobaltâ€Catalyzed Hydroformylation. Angewandte Chemie - International Edition, 2020, 59, 8912-8916.	7.2	15
180	Mechanistic Origins of Regioselectivity in Cobalt-Catalyzed C(sp2)-H Borylation of Benzoate Esters and Arylboronate Esters. CheM, 2021, 7, 237-254.	5.8	15

#	Article	IF	CITATIONS
181	Thermodynamics of N–H bond formation in bis(phosphine) molybdenum(<scp>ii</scp>) diazenides and the influence of the trans ligand. Dalton Transactions, 2016, 45, 15922-15930.	1.6	14
182	Cationic Bis(phosphine) Cobalt(I) Arene Complexes as Precatalysts for the Asymmetric Synthesis of Sitagliptin. ACS Catalysis, 2022, 12, 4680-4687.	5.5	14
183	Ultrafast Photophysics of a Dinitrogen-Bridged Molybdenum Complex. Journal of the American Chemical Society, 2018, 140, 6298-6307.	6.6	13
184	Pyridine(diimine) Chelate Hydrogenation in a Molybdenum Nitrido Ethylene Complex. Organometallics, 2019, 38, 1682-1687.	1.1	13
185	Direct Observation of Transmetalation from a Neutral Boronate Ester to a Pyridine(diimine) Iron Alkoxide. Organometallics, 2020, 39, 201-205.	1.1	13
186	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
187	Iron-Catalyzed Vinylsilane Dimerization and Cross-Cycloadditions with 1,3-Dienes: Probing the Origins of Chemo- and Regioselectivity. ACS Catalysis, 2021, 11, 1368-1379.	5.5	13
188	Catalyst Design Principles Enabling Intermolecular Alkene-Diene [2+2] Cycloaddition and Depolymerization Reactions. Journal of the American Chemical Society, 2021, 143, 17793-17805.	6.6	13
189	Well-Defined Cationic Cobalt(I) Precatalyst for Olefin-Alkyne [2 + 2] Cycloaddition and Olefin-Diene Hydrovinylation Reactions: Experimental Evidence for Metallacycle Intermediates. Organometallics, 2021, 40, 3599-3607.	1.1	13
190	Editorial: A New Look, Some New Faces, and Continuing the Tradition of Excellence. Organometallics, 2015, 34, 1-2.	1.1	12
191	Synthesis of Cationic, Dimeric α-Diimine Nickel Hydride Complexes and Relevance to the Polymerization of Olefins. Organometallics, 2020, 39, 2630-2635.	1.1	12
192	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Technology, 2021, 55, 8459-8463.	4.6	12
193	Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. Jacs Au, 2022, 2, 407-418.	3.6	12
194	Bis(indenyl)hafnium Chemistry: Ligand-Induced Haptotropic Rearrangement and Fundamental Reactivity Studies at a Reduced Hafnium Center. Organometallics, 2009, 28, 2471-2484.	1.1	11
195	Oxidative Addition of Aryl and Alkyl Halides to a Reduced Iron Pincer Complex. Journal of the American Chemical Society, 2021, 143, 5928-5936.	6.6	11
196	Ligand substitution and electronic structure studies of bis(phosphine)cobalt cyclooctadiene precatalysts for alkene hydrogenation. Canadian Journal of Chemistry, 2021, 99, 193-201.	0.6	10
197	A Career in Catalysis: John E. Bercaw. ACS Catalysis, 2015, 5, 1747-1757.	5.5	9
198	Interconversion of Molybdenum Imido and Amido Complexes by Proton oupled Electron Transfer. Angewandte Chemie, 2018, 130, 2246-2250.	1.6	8

#	Article	IF	CITATIONS
199	Determination of the N–H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. Inorganic Chemistry, 2020, 59, 15394-15401.	1.9	8
200	Coordination-Induced N–H Bond Weakening in a Molybdenum Pyrrolidine Complex: Isotopic Labeling Provides Insight into the Pathway for H ₂ Evolution. Organometallics, 2020, 39, 3050-3059.	1.1	8
201	C(sp ²)–H Activation with Bis(silylene)pyridine Cobalt(III) Complexes: Catalytic Hydrogen Isotope Exchange of Sterically Hindered C–H Bonds. ACS Catalysis, 2022, 12, 8877-8885.	5.5	8
202	<i>Organometallics</i> in 2019: It is Elementary. Organometallics, 2019, 38, 195-197.	1.1	7
203	Synthesis and Asymmetric Alkene Hydrogenation Activity of <i>C</i> ₂ -Symmetric Enantioenriched Pyridine Dicarbene Iron Dialkyl Complexes. Organometallics, 2021, 40, 1053-1061.	1.1	7
204	Synthesis, Electronic Structure, and Reactivity of a Planar Four oordinate, Cobalt–Imido Complex. Angewandte Chemie, 2021, 133, 14497-14501.	1.6	7
205	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	3.9	7
206	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	1.6	7
207	Effect of Pincer Methylation on the Selectivity and Activity in (PNP)Cobalt-Catalyzed C(sp ²)–H Borylation. Organometallics, 2021, 40, 3766-3774.	1.1	7
208	Dos and Don'ts: Thoughts on How To Respond to Reviewer Comments. Organometallics, 2018, 37, 2655-2655.	1.1	6
209	Exploring C(sp3)–C(sp3) reductive elimination from an isolable iron metallacycle. Polyhedron, 2019, 159, 308-317.	1.0	6
210	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	2.4	6
211	Expanding the Boundaries of Organometallic Chemistry. Organometallics, 2018, 37, 835-836.	1.1	5
212	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
213	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
214	Cationic Pyridine(diimine) Iron Tethered Alkene Complexes: Synthetic Models For Elusive Intermediates In Iron-Catalyzed Ethylene Polymerization. Bulletin of Japan Society of Coordination Chemistry, 2016, 67, 19-29.	0.1	4
215	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
216	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	1.1	4

#	Article	IF	CITATIONS
217	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	1.7	4
218	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
219	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	1.8	3
220	Editorial: Organometallics Is a Changin'—The What, Why, and How. Organometallics, 2015, 34, 3097-3098.	1.1	2
221	Editorial: Introducing Tutorials. Organometallics, 2015, 34, 4783-4783.	1.1	2
222	Organometallics in 2017: A Global Endeavor. Organometallics, 2017, 36, 1-4.	1.1	2
223	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
224	Actions at <i>J. Org. Chem.</i> , <i>Org. Lett.</i> , and <i>Organometallics</i> to Combat Discrimination and Bias. Journal of Organic Chemistry, 2020, 85, 10285-10286.	1.7	2
225	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
226	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
227	2020 Vision: A Year for Pioneers and Influencers of Organometallic Chemistry. Organometallics, 2020, 39, 1-2.	1.1	2
228	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	3.2	2
229	(PNP)Cobalt-Catalyzed Olefination of Diazoalkanes. Organometallics, 2022, 41, 3138-3144.	1.1	2
230	Nickel-Catalyzed Dimerization of Di- and Trisubstituted Olefins. Organometallics, 2022, 41, 2059-2066.	1.1	2
231	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Inorganic Chemistry, 2018, 57, 11299-11305.	1.9	1
232	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organometallics, 2018, 37, 2825-2831.	1.1	1
233	Titelbild: Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds (Angew. Chem. 27/2019). Angewandte Chemie, 2019, 131, 9041-9041.	1.6	1
234	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1

#	Article	IF	CITATIONS
235	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
236	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
237	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
238	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
239	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
240	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
241	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
242	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
243	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
244	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
245	From Russia, With Chemistry. Organometallics, 2020, 39, 375-377.	1.1	1
246	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
247	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
248	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
249	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
250	Innentitelbild: Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations (Angew. Chem. 35/2011). Angewandte Chemie, 2011, 123, 8104-8104.	1.6	0
251	Inside Cover: Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations (Angew. Chem. Int. Ed. 35/2011). Angewandte Chemie - International Edition, 2011, 50, 7956-7956.	7.2	0
252	Editorial: An Award-Winning Tutorial. Organometallics, 2016, 35, 3087-3087.	1.1	0

#	Article	IF	CITATIONS
253	Introduction to the Virtual Issue Honoring Robert Bergman's 2017 Wolf Prize in Chemistry. Organometallics, 2017, 36, 957-959.	1.1	Ο
254	Communicating Science. Organometallics, 2017, 36, 4339-4340.	1.1	0
255	Organometallics in 2018. Organometallics, 2018, 37, 271-272.	1.1	0
256	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Journal of Organic Chemistry, 2018, 83, 9573-9579.	1.7	0
257	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organic Letters, 2018, 20, 5075-5081.	2.4	Ο
258	Organometallics Global Enterprise. Organometallics, 2019, 38, 1827-1827.	1.1	0
259	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	Ο
260	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
261	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	Ο
262	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
263	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
266	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
268	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
269	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
270	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
272	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
273	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
274	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
275	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
276	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
277	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
278	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
279	Actions at <i>J. Org. Chem.</i> , <i>Org. Lett.</i> and <i>Organometallics</i> to Combat Discrimination and Bias. Organometallics, 2020, 39, 2929-2930.	1.1	0
280	Actions at <i>J. Org. Chem.</i> , <i>Org. Lett.</i> , and <i>Organometallics</i> to Combat Discrimination and Bias. Organic Letters, 2020, 22, 6221-6222.	2.4	0
281	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
282	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
283	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
284	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
285	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
286	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
287	Dietmar Seyferth (1929–2020): A Foundational and Enduring Legacy at <i>Organometallics</i> . Organometallics, 2020, 39, 3061-3063.	1.1	0
288	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0

#	Article	IF	CITATIONS
289	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
290	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
291	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
292	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
293	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
294	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
297	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
298	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
299	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
300	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
301	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
302	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
303	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
304	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
305	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
306	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0

#	Article	IF	CITATIONS
307	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	Ο
308	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	Ο
310	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
311	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	О
312	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
313	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
314	Pioneers and Influencers in Organometallic Chemistry: A Profile of Professor Jay Kochi. Organometallics, 2020, 39, 775-777.	1.1	0
315	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
316	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
317	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	ο
318	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
319	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
320	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
321	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	Ο
322	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
323	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	Ο
324	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
326	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
327	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
328	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
329	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	Ο
330	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
331	From Russia, With Chemistry. Organic Letters, 2020, 22, 765-767.	2.4	Ο
332	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
333	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
334	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
335	Synthesis and Reactivity of Organometallic Intermediates Relevant to Cobalt atalyzed Hydroformylation. Angewandte Chemie, 2020, 132, 8997-9001.	1.6	Ο
336	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
337	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	Ο
338	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
339	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
340	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
341	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
342	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0

#	Article	IF	CITATIONS
343	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
344	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
345	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
347	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
348	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
349	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
350	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
351	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
352	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
353	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
354	Looking Forward to 2021: The Fabulous Forties!. Organometallics, 2021, 40, 95-97.	1.1	0
355	Pioneers and Influencers: A Profile of Dr. Kenrick Lewis. Organometallics, 2021, 40, 459-462.	1.1	0
356	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
357	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
358	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
359	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
360	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
362	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
363	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
364	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
365	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
366	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
367	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
368	From Russia, With Chemistry. Journal of Organic Chemistry, 2020, 85, 1325-1327.	1.7	0
369	Making 2022 Picture Perfect. Organometallics, 0, , .	1.1	0
370	40 Years of <i>Organometallics</i> . Organometallics, 2021, 40, 4035-4040.	1.1	0
371	Pioneers and Influencers in Organometallic Chemistry: A Profile of Dr. Barbara Burger. Organometallics, 2022, 41, 1587-1589.	1.1	0