Danny A Spampinato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1663074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. Journal of Physiology, 2023, 601, 3187-3199.	2.9	4
2	Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. Cerebellum, 2022, 21, 1092-1122.	2.5	32
3	Alzheimer disease and neuroplasticity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 473-479.	1.8	12
4	Comparing the effects of focal and conventional tDCS on motor skill learning: A proof of principle study. Neuroscience Research, 2022, 178, 83-86.	1.9	3
5	Multiple Motor Learning Processes in Humans: Defining Their Neurophysiological Bases. Neuroscientist, 2021, 27, 246-267.	3.5	62
6	Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimulation, 2021, 14, 277-283.	1.6	20
7	Stimulating the deprived motor â€~hand' area causes facial muscle responses in one-handers. Brain Stimulation, 2021, 14, 347-350.	1.6	4
8	Two forms of short-interval intracortical inhibition in human motor cortex. Brain Stimulation, 2021, 14, 1340-1352.	1.6	16
9	Cerebellar transcranial magnetic stimulation: The role of coil type from distinct manufacturers. Brain Stimulation, 2020, 13, 153-156.	1.6	32
10	The association between apathy and frailty in older adults: a new investigation using data from the Mapt study. Aging and Mental Health, 2020, 24, 1985-1989.	2.8	8
11	SICI during changing brain states: Differences in methodology can lead to different conclusions. Brain Stimulation, 2020, 13, 353-356.	1.6	17
12	Dissecting two distinct interneuronal networks in M1 with transcranial magnetic stimulation. Experimental Brain Research, 2020, 238, 1693-1700.	1.5	20
13	Cerebellar–Motor Cortex Connectivity: One or Two Different Networks?. Journal of Neuroscience, 2020, 40, 4230-4239.	3.6	57
14	Exploring the connectivity between the cerebellum and facial motor cortex. Brain Stimulation, 2019, 12, 1586-1587.	1.6	7
15	A case of congenital hypoplasia of the left cerebellar hemisphere and ipsilateral cortical myoclonus. Movement Disorders, 2019, 34, 1745-1747.	3.9	12
16	Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings. Brain Stimulation, 2019, 12, 1205-1212.	1.6	23
17	Deconstructing skill learning and its physiological mechanisms. Cortex, 2018, 104, 90-102.	2.4	45
18	Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning. Scientific Reports, 2017, 7, 40715.	3.3	87

DANNY A SPAMPINATO

#	Article	IF	CITATIONS
19	Cerebellar–M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific. Journal of Neuroscience, 2017, 37, 2377-2386.	3.6	61
20	Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Frontiers in Psychology, 2016, 7, 1981.	2.1	52
21	Cerebellar Direct Current Stimulation Enhances On-Line Motor Skill Acquisition through an Effect on Accuracy. Journal of Neuroscience, 2015, 35, 3285-3290.	3.6	114
22	Laterality Differences in Cerebellar–Motor Cortex Connectivity. Cerebral Cortex, 2015, 25, 1827-1834.	2.9	64