Dewan S A Majid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1662802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increase in Salt Concentration in the Culture Media Enhances Protein Expression of Tumor Necrosis Factorâ€Alpha Receptor Type 1 in Cultured Renal Cortical Collecting Duct Cells But Not in Proximal Tubular Cells. FASEB Journal, 2022, 36, .	0.5	0
2	Tumor Necrosis Factorâ€Alpha Receptor Typeâ€1 Protein Level Decreases in Renal Cortical But Not in Medullary Tissue During High Salt Intake in Nitric Oxide Deficient Mice. FASEB Journal, 2021, 35, .	0.5	0
3	Angiotensin Ilâ€induced natriuresis is attenuated in knockout mice lacking the receptors for tumor necrosis factorâ€Î±. Physiological Reports, 2021, 9, e14942.	1.7	1
4	Angiotensin IIâ€induced renal angiotensinogen formation is enhanced in mice lacking tumor necrosis factorâ€alpha type 1 receptor. Physiological Reports, 2021, 9, e14990.	1.7	3
5	Highâ€salt intake reduces renal tissue levels of inflammatory cytokines in mice. Physiological Reports, 2021, 8, e14621.	1.7	3
6	Role of ILâ€18â€ŧransformed CD274â€expressing eosinophils in promoting airway obstruction in experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	5.7	3
7	Protective Actions of Cilnidipine: Dual L/N-Type Calcium Channel Blocker Against Hypertensive Renal Injury in Rats. Biomedical and Pharmacology Journal, 2021, 14, 1887-1893.	0.5	1
8	Low Nitric Oxide Bioavailability Increases Renin Production in the Collecting Duct. Frontiers in Physiology, 2020, 11, 559341.	2.8	9
9	Evidence for Prohypertensive, Proinflammatory Effect of Interleukin-10 During Chronic High Salt Intake in the Condition of Elevated Angiotensin II Level. Hypertension, 2017, 70, 839-845.	2.7	15
10	Tumor necrosis factor-α, kidney function, and hypertension. American Journal of Physiology - Renal Physiology, 2017, 313, F1005-F1008.	2.7	115
11	Enhancement in cellular Na ⁺ K ⁺ ATPase activity by low doses of peroxynitrite in mouse renal tissue and in cultured HK2 cells. Physiological Reports, 2016, 4, e12766.	1.7	7
12	Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Current Hypertension Reviews, 2015, 11, 38-48.	0.9	53
13	Hypertensive and Renal Injury Responses to Nitric Oxide deficiency are Unaffected by Tyrosine Kinase Inhibition in Mice. FASEB Journal, 2015, 29, 960.8.	0.5	0
14	Decrease in IL-10 and increase in TNF-αlevels in renal tissues during systemic inhibition of nitric oxide in anesthetized mice. Physiological Reports, 2014, 2, e00228.	1.7	12
15	TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice. American Journal of Physiology - Renal Physiology, 2013, 304, F991-F999.	2.7	30
16	Protective role of the endothelial isoform of nitric oxide synthase in ANG II-induced inflammatory responses in the kidney. American Journal of Physiology - Renal Physiology, 2013, 305, F1031-F1041.	2.7	20
17	Suppression of inflammatory cytokines in the kidney during chronic high salt intake in wild type and eâ€NOS knockout mice. FASEB Journal, 2013, 27, 704.2.	0.5	1
18	AT ₁ receptor-mediated augmentation of angiotensinogen, oxidative stress, and inflammation in ANG II-salt hypertension. American Journal of Physiology - Renal Physiology, 2012, 302, F85-F94.	2.7	70

Dewan S A Majid

#	Article	IF	CITATIONS
19	Tumor necrosis factor-α receptor type 1, not type 2, mediates its acute responses in the kidney. American Journal of Physiology - Renal Physiology, 2012, 302, F1650-F1657.	2.7	28
20	Chronic Exercise Preserves Renal Structure and Hemodynamics in Spontaneously Hypertensive Rats. Antioxidants and Redox Signaling, 2012, 16, 139-152.	5.4	61
21	Effects of acute systemic inhibition of nitric oxide synthase on plasma levels of proâ€and antiâ€inflammatory cytokines in anesthetized mice. FASEB Journal, 2012, 26, 1131.14.	0.5	1
22	Enhancement of cellular Na+K+ATPase activity in the mouse renal tissue inâ€vitro with low concentration of peroxynitrite. FASEB Journal, 2012, 26, 885.4.	0.5	0
23	High Salt Intake Delayed Angiotensin II-Induced Hypertension in Mice With a Genetic Variant of NADPH Oxidase. American Journal of Hypertension, 2011, 24, 114-118.	2.0	19
24	Tumor Necrosis Factor-α and Kidney Function: Experimental Findings in Mice. Advances in Experimental Medicine and Biology, 2011, 691, 471-480.	1.6	21
25	Involvement of tumor necrosis factor-α in natriuretic response to systemic infusion of nitric oxide synthase inhibitor in anesthetized mice. American Journal of Physiology - Renal Physiology, 2010, 299, F217-F224.	2.7	25
26	High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. American Journal of Physiology - Renal Physiology, 2010, 299, F656-F663.	2.7	40
27	RENAL VASOCONSTRICTION AND NATRIURESIS INDUCED BY TUMOR NECROSIS FACTOR (TNF)â€i± ARE MEDIATI BY TNF RECEPTOR TYPE 1. FASEB Journal, 2010, 24, 793.4.	ED 0.5	0
28	Renal hemodynamic and excretory responses to intra-arterial infusion of peroxynitrite in anesthetized rats. American Journal of Physiology - Renal Physiology, 2009, 296, F170-F176.	2.7	14
29	Cholesterol induces renal vasoconstriction and anti-natriuresis by inhibiting nitric oxide production in anesthetized rats. American Journal of Physiology - Renal Physiology, 2009, 297, F1606-F1613.	2.7	12
30	Influence of experimental early diabetic nephropathy on the functional subtypes of renal α1â€adrenoceptor in spontaneously hypertensive rats (SHR). FASEB Journal, 2009, 23, 971.7.	0.5	0
31	Reduced renal responses to nitric oxide synthase inhibition in mice lacking the gene for gp91 ^{<i>phox</i>} subunit of NAD(P)H oxidase. American Journal of Physiology - Renal Physiology, 2008, 295, F758-F764.	2.7	16
32	Tumor necrosis factor-α induces renal vasoconstriction as well as natriuresis in mice. American Journal of Physiology - Renal Physiology, 2008, 295, F1836-F1844.	2.7	80
33	Involvement of Tumor Necrosis Factor-α in Angiotensin Il–Mediated Effects on Salt Appetite, Hypertension, and Cardiac Hypertrophy. Hypertension, 2008, 51, 1345-1351.	2.7	245
34	Superoxide and its interaction with nitric oxide modulates renal function in prehypertensive Ren-2 transgenic rats. Journal of Hypertension, 2007, 25, 2257-2265.	0.5	15
35	NITRIC OXIDE AND SUPEROXIDE INTERACTIONS IN THE KIDNEY AND THEIR IMPLICATION IN THE DEVELOPMENT OF SALT-SENSITIVE HYPERTENSION. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 946-952.	1.9	84
36	Renal responses to angiotensin II are attenuated in knockout mice lacking the gene for tumor necrosis factorâ€i±. FASEB Journal, 2007, 21, A501.	0.5	2

DEWAN S A MAJID

#	Article	IF	CITATIONS
37	Oxidant Stress and Blood Pressure Responses to Angiotensin II Administration in Rats Fed Varying Salt Diets. American Journal of Hypertension, 2006, 19, 534-540.	2.0	22
38	Superoxide Formation and Interaction with Nitric Oxide Modulate Systemic Arterial Pressure and Renal Function in Salt-Depleted Dogs. Experimental Biology and Medicine, 2006, 231, 269-276.	2.4	15
39	Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats. American Journal of Physiology - Renal Physiology, 2006, 290, F80-F86.	2.7	63
40	Enhanced Superoxide Activity Modulates Renal Function in NO-Deficient Hypertensive Rats. Hypertension, 2006, 47, 568-572.	2.7	42
41	Superoxide Contributes to Development of Salt Sensitivity and Hypertension Induced by Nitric Oxide Deficiency. Hypertension, 2005, 46, 1026-1031.	2.7	69
42	Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs. American Journal of Physiology - Renal Physiology, 2005, 288, F412-F419.	2.7	46
43	Assessment of Renal Functional Phenotype in Mice Lacking gp91PHOXSubunit of NAD(P)H Oxidase. Hypertension, 2004, 43, 335-340.	2.7	57
44	Inhibition of nitric oxide synthase enhances superoxide activity in canine kidney. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R27-R32.	1.8	44
45	Nitric Oxide Blockade Enhances Renal Responses to Superoxide Dismutase Inhibition in Dogs. Hypertension, 2002, 39, 293-297.	2.7	76
46	Nitric Oxide Dependency of Arterial Pressure–Induced Changes in Renal Interstitial Hydrostatic Pressure in Dogs. Circulation Research, 2001, 88, 347-351.	4.5	39
47	Kinin influences on renal regional blood flow responses to angiotensin-converting enzyme inhibition in dogs. American Journal of Physiology - Renal Physiology, 1999, 276, F271-F277.	2.7	18
48	Responses to Acute Changes in Arterial Pressure on Renal Medullary Nitric Oxide Activity in Dogs. Hypertension, 1999, 34, 832-836.	2.7	22
49	Intrarenal Nitric Oxide Activity and Pressure Natriuresis in Anesthetized Dogs. Hypertension, 1998, 32, 266-272.	2.7	57
50	Renal handling of circulating nitrates in anesthetized dogs. American Journal of Physiology - Renal Physiology, 1998, 275, F68-F73.	2.7	21
51	Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat. American Journal of Physiology - Renal Physiology, 1998, 274, F876-F882.	2.7	46
52	Pressure Natriuresis and Renal Medullary Blood Flow in Dogs. Hypertension, 1997, 29, 1051-1057.	2.7	32
53	High salt induced augmentation of angiotensin II mediated hypertension is associated with differential expression of tumor necrosis factor-alpha receptors in the kidney. Exploration of Medicine, 0, , 205-218.	1.5	1