Irfan Turhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1662176/publications.pdf

Version: 2024-02-01

270111 388640 84 1,688 25 36 h-index citations g-index papers 90 90 90 1298 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Investigation of the inhibitory effects of furfural and hydroxymethylfurfural on the production ofÂAspergillus nigerÂinulinase and modeling of the process. Biomass Conversion and Biorefinery, 2023, 13, 4291-4303.	2.9	3
2	Modeling of ethanol fermentation from carob extract–based medium by using Saccharomyces cerevisiae in the immobilized-cell stirred tank bioreactor. Biomass Conversion and Biorefinery, 2022, 12, 5241-5255.	2.9	9
3	Thermostability of Aspergillus niger inulinase from sugar beet molasses in the submerged fermentation and determination of its kinetic and thermodynamic parameters. Biomass Conversion and Biorefinery, 2022, 12, 3219-3227.	2.9	10
4	Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis. Environmental Technology (United Kingdom), 2022, 43, 3779-3800.	1.2	7
5	Effect of process parameters and microparticle addition on polygalacturonase activity and fungal morphology of Aspergillus sojae. Biomass Conversion and Biorefinery, 2022, 12, 5329-5344.	2.9	5
6	Evaluation of the inhibitory effect of 5-hydroxymethylfurfural (HMF) on ethanol fermentation by using immobilized Saccharomyces cerevisiae in stirred-tank bioreactor and mathematical modeling. Fuel, 2022, 317, 123499.	3.4	3
7	Kinetic modeling, sensitivity analysis, and techno-economic feasibility of ethanol fermentation from non-sterile carob extract-based media in Saccharomyces cerevisiae biofilm reactor under a repeated-batch fermentation process. Fuel, 2022, 324, 124729.	3.4	7
8	Repeated-batch fermentation of Scheffersomyces stipitis in biofilm reactor for ethanol production from the detoxified and glucose- or xylose-enriched rice husk hydrolysate and its kinetic modeling. Fuel, 2022, 326, 125053.	3.4	2
9	The inhibition effect of phenol on the production of <i>Aspergillus niger</i> inulinase and its modeling. Journal of Food Processing and Preservation, 2021, 45, e14522.	0.9	13
10	Scheffersomyces stipitis biofilm reactor for ethanol production from acid-pretreated/detoxified and glucose- or xylose-enriched rice husk hydrolysate under a continuous process. Biomass Conversion and Biorefinery, 2021, 11, 2909-2921.	2.9	7
11	Implementation of flexible models to bioethanol production from carob extract–based media in a biofilm reactor. Biomass Conversion and Biorefinery, 2021, 11, 2983-2999.	2.9	5
12	Solidâ€state fermentation for the production of a recombinant βâ€mannanase from <i>Aspergillus fumigatus</i> expressed in <i>Aspergillus sojae</i> grown on renewable resources. Journal of Food Processing and Preservation, 2021, 45, e14584.	0.9	10
13	Applicability of recombinant Aspergillus sojae crude mannanase enzyme in carrot juice production. Journal of Food Processing and Preservation, 2021, 45, e14603.	0.9	2
14	Effect of furfural concentration on ethanol production using ⟨i⟩Saccharomyces cerevisiae⟨ i⟩ in an immobilized cells stirredâ€tank bioreactor with glucoseâ€based medium and mathematical modeling. Journal of Food Processing and Preservation, 2021, 45, e14635.	0.9	13
15	Mannooligosaccharide production by βâ€mannanase enzyme application from coffee extract. Journal of Food Processing and Preservation, 2021, 45, e14668.	0.9	8
16	The effects of mannanase activity on viscosity in different gums. Journal of Food Processing and Preservation, 2021, 45, e14820.	0.9	4
17	Scaleâ€up processing with different microparticle agent for βâ€mannanase production in a largeâ€scale stirred tank bioreactor. Journal of Food Processing and Preservation, 2021, 45, e14915.	0.9	8
18	Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant Aspergillus sojae βâ€mannanase produced in the microparticleâ€enhanced largeâ€scale stirred tank bioreactor. Journal of Food Processing and Preservation, 2021, 45, e14916.	0.9	7

#	Article	IF	Citations
19	Ethanol production from different medium compositions of rice husk hydrolysate by using Scheffersomyces stipitis in a repeated-batch biofilm reactor and its modeling. Process Biochemistry, 2021, 100, 26-38.	1.8	12
20	Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochemical Engineering Journal, 2021, 176, 108201.	1.8	8
21	Predictive modeling and sensitivity analysis to estimate the experimental data of inulinase fermentation by Aspergillus niger grown on sugar beet molassesâ€based medium optimized using Plackettâ€Burman Design. Biotechnology and Applied Biochemistry, 2021, , .	1.4	1
22	Application of mathematical models to ethanol fermentation in biofilm reactor with carob extract. Biomass Conversion and Biorefinery, 2020, 10, 237-252.	2.9	20
23	Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioprocess and Biosystems Engineering, 2020, 43, 217-232.	1.7	41
24	Partial purification and characterization of a recombinant \hat{l}^2 -mannanase from Aspergillus fumigatus expressed in Aspergillus sojae grown on carob extract. Biomass Conversion and Biorefinery, 2020, 10, 1189-1205.	2.9	17
25	Inulinase production and mathematical modeling from carob extract by using <i>Aspergillus niger</i> . Biotechnology Progress, 2020, 36, e2919.	1.3	32
26	Production and characterization of tempehs from different sources of legume by Rhizopus oligosporus. LWT - Food Science and Technology, 2020, 119, 108880.	2.5	25
27	Statistical and kinetic modeling of Aspergillus niger inulinase fermentation from carob extract and its partial concentration. Industrial Crops and Products, 2020, 156, 112866.	2.5	12
28	Partial purification and characterization of Aspergillus niger inulinase produced from sugar-beet molasses in the shaking incubator and stirred-tank bioreactors. International Journal of Biological Macromolecules, 2020, 164, 3789-3799.	3.6	8
29	Enhanced production of Aspergillus niger inulinase from sugar beet molasses and its kinetic modeling. Biotechnology Letters, 2020, 42, 1939-1955.	1.1	16
30	Chemical characterization of acid-pretreated renewable resources: effect of pretreatment time. Biofuels, 2020 , , $1-11$.	1.4	4
31	Biofilm reactors for value-added products production: An in-depth review. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101662.	1.5	36
32	Mathematical modeling of batch bioethanol generation from carob extract in the suspendedâ€cell stirredâ€tank bioreactor. International Journal of Energy Research, 2020, 44, 9021-9034.	2.2	9
33	Enhancing \hat{l}^2 -mannanase production by controlling fungal morphology in the bioreactor with microparticle addition. Food and Bioproducts Processing, 2020, 121, 123-130.	1.8	19
34	Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization. Bioprocess and Biosystems Engineering, 2019, 42, 1993-2005.	1.7	35
35	Bioconversion of wheat bran into high value-added products and modelling of fermentations. Industrial Crops and Products, 2019, 139, 111565.	2.5	42
36	Liquid State Bioreactor. Learning Materials in Biosciences, 2019, , 135-168.	0.2	3

#	Article	IF	Citations
37	βâ€Mannanase production and kinetic modeling from carob extract by using recombinant <i>Aspergillus sojae</i> Biotechnology Progress, 2019, 35, e2885.	1.3	21
38	Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. Applied Sciences (Switzerland), 2019, 9, 2121.	1.3	24
39	A current approach to the control of filamentous fungal growth in media: microparticle enhanced cultivation technique. Critical Reviews in Biotechnology, 2019, 39, 192-201.	5.1	39
40	Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Conversion and Biorefinery, 2018, 8, 607-619.	2.9	27
41	Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Conversion and Biorefinery, 2018, 8, 529-544.	2.9	13
42	Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis and Agricultural Biotechnology, 2018, 14, 254-263.	1.5	23
43	Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose, 2018, 25, 6377-6393.	2.4	23
44	Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel, 2018, 231, 101-109.	3.4	42
45	Carob as a carbon source for fermentation technology. Biocatalysis and Agricultural Biotechnology, 2018, 16, 200-208.	1.5	18
46	Ethanol production in aÂbiofilm reactor with non-sterile carob extract media and its modeling. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2726-2734.	1.2	15
47	Effect of different fermentation strategies on \hat{I}^2 -mannanase production in fed-batch bioreactor system. 3 Biotech, 2017, 7, 77.	1.1	36
48	Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae. 3 Biotech, 2017, 7, 361.	1,1	29
49	Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose, 2017, 24, 4337-4353.	2,4	26
50	Optimization of ultrasound-assisted dilute acid hydrolysis conditions of tea processing waste. , 2016, ,		0
51	Ethanol production from carob extract by using < i > Saccharomyces cerevisiae < /i> in biofilm reactor. , 2016, , .		0
52	Ethanol production from rice hull using <i>Pichia stipitis</i> and optimization of acid pretreatment and detoxification processes. Biotechnology Progress, 2016, 32, 872-882.	1.3	28
53	Optimization of acidic hydrolysis conditions of rice husk for fermentable sugar production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3103-3108.	1.2	7
54	Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3268-3272.	1.2	19

#	Article	lF	Citations
55	Ultrasoundâ€assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnology Progress, 2016, 32, 393-403.	1.3	28
56	Controlling filamentous fungi morphology with microparticles to enhanced \hat{l}^2 -mannanase production. Bioprocess and Biosystems Engineering, 2016, 39, 1391-1399.	1.7	53
57	Enhanced \hat{l}^2 -mannanase production from alternative sources by recombinant Aspergillus sojae. Acta Alimentaria, 2016, 45, 371-379.	0.3	22
58	Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess and Biosystems Engineering, 2015, 38, 1075-1080.	1.7	50
59	Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles. Bioprocess and Biosystems Engineering, 2015, 38, 1431-1436.	1.7	23
60	Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel, 2015, 161, 304-311.	3.4	55
61	Relationship Between Sugar Profile and D-Pinitol Content of Pods of Wild and Cultivated Types of Carob Bean (<i>Ceratonia siliqua</i> L.). International Journal of Food Properties, 2014, 17, 363-370.	1.3	29
62	Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Scientia Horticulturae, 2014, 167, 149-152.	1.7	33
63	Utilization of alcohol dehydrogenase (ADH3) promoter for recombinant protein expression in Pichia pastoris. Journal of Biotechnology, 2014, 185, S57.	1.9	0
64	Effect of Ultrafiltration and Concentration Processes on the Physical and Chemical Composition of Blood Orange Juice. Journal of Food Processing and Preservation, 2014, 38, 1321-1329.	0.9	25
65	EFFECTS OF PROCESSING METHOD AND STORAGE TEMPERATURE ON CLEAR POMEGRANATE JUICE TURBIDITY AND COLOR. Journal of Food Processing and Preservation, 2013, 37, 899-906.	0.9	15
66	A Largeâ€Scale Study on Storage Stability of Cloudy Apple Juice Treated by <scp>N</scp> ₂ and Ascorbic Acid. Journal of Food Quality, 2013, 36, 121-126.	1.4	7
67	Oil production by Mortierella isabellina from whey treated with lactase. Bioresource Technology, 2013, 128, 365-369.	4.8	35
68	Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresource Technology, 2013, 135, 365-371.	4.8	59
69	Determination of the optimum growth conditions for Aspergillus sojae pyrGâ [*] transformed using response surface method. Journal of Biotechnology, 2012, 161, 39-40.	1.9	0
70	The effect of microbial growth on total phenolic compounds during fermentation. Journal of Biotechnology, 2012, 161, 40.	1.9	0
71	Decolourization of carob pod extract by using Aspergillus sojae pyrg-transformed. Journal of Biotechnology, 2012, 161, 40.	1.9	0
72	Determination of <scp>d < /scp>-pinitol in carob syrup. International Journal of Food Sciences and Nutrition, 2011, 62, 572-576.</scp>	1.3	39

#	Article	IF	Citations
73	Optimization of Extraction of D-pinitol and Phenolics from Cultivated and Wild Types of Carob Pods Using Response Surface Methodology. International Journal of Food Engineering, 2011, 7, .	0.7	8
74	Physical and chemical characterization of Ceratonia siliqua L. germplasm in Turkey. Scientia Horticulturae, 2011, 129, 583-589.	1.7	19
75	Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresource Technology, 2010, 101, 5290-5296.	4.8	118
76	Enhanced Lactic Acid Production from Carob Extract by <i>Lactobacillus casei</i> Using Invertase Pretreatment. Food Biotechnology, 2010, 24, 364-374.	0.6	36
77	Enhanced ethanol production from carob extract by Saccharomyces cerevisiae., 2009,,.		0
78	Enhanced Lactic acid production from carob extract by Lactobacillus casei., 2009,,.		0
79	Quality of honeys influenced by thermal treatment. LWT - Food Science and Technology, 2008, 41, 1396-1399.	2.5	95
80	LIQUID?SOLID EXTRACTION OF SOLUBLE SOLIDS AND TOTAL PHENOLIC COMPOUNDS OF CAROB BEAN (Ceratonia siliqua L.). Journal of Food Process Engineering, 2006, 29, 498-507.	1.5	32
81	KINETIC MODELING OF ANAEROBIC THERMAL DEGRADATION OF ASCORBIC ACID IN ROSE HIP (ROSA CANINA) T	ij ξ ŢΩq1 1	0,784314
82	Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Conversion and Biorefinery, 0 , , 1 .	2.9	7
83	Predicting the experimental data of the substrate specificity of Aspergillus niger inulinase using mathematical models, estimating kinetic constants in the Michaelis–Menten equation, and sensitivity analysis. Biomass Conversion and Biorefinery, 0, , 1.	2.9	8
84	Application of Aspergillus niger inulinase production in sugar beet molasses-based medium optimized by Central Composite Design to mathematical models. Biomass Conversion and Biorefinery, 0, , 1.	2.9	3