
F Javier Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661687/publications.pdf Version: 2024-02-01

F INVIED OUVED

#	Article	IF	CITATIONS
1	Emerging noninvasive methylation biomarkers of cancer prognosis and drug response prediction. Seminars in Cancer Biology, 2022, 83, 584-595.	9.6	18
2	Glioblastoma Cells Counteract PARP Inhibition through Pro-Survival Induction of Lipid Droplets Synthesis and Utilization. Cancers, 2022, 14, 726.	3.7	1
3	Implications of Hyperoxia over the Tumor Microenvironment: An Overview Highlighting the Importance of the Immune System. Cancers, 2022, 14, 2740.	3.7	6
4	Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. Journal of Experimental and Clinical Cancer Research, 2021, 40, 144.	8.6	26
5	Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions. Redox Biology, 2021, 41, 101885.	9.0	34
6	Enhancing the Bystander and Abscopal Effects to Improve Radiotherapy Outcomes. Frontiers in Oncology, 2020, 9, 1381.	2.8	17
7	The PARP Inhibitor Olaparib Modulates the Transcriptional Regulatory Networks of Long Non-Coding RNAs during Vasculogenic Mimicry. Cells, 2020, 9, 2690.	4.1	5
8	Parp3 promotes astrocytic differentiation through a tight regulation of Nox4-induced ROS and mTorc2 activation. Cell Death and Disease, 2020, 11, 954.	6.3	17
9	Endothelial Phosphatase VE-PTP Participates in Vasculogenic Mimicry by Preventing Autophagic Degradation of VE-Cadherin. Frontiers in Oncology, 2020, 10, 18.	2.8	7
10	Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells. Scientific Reports, 2020, 10, 6361.	3.3	26
11	The Multifactorial Role of PARP-1 in Tumor Microenvironment. Cancers, 2020, 12, 739.	3.7	31
12	VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death and Differentiation, 2019, 26, 348-361.	11.2	61
13	PARP1 and Poly(ADP-ribosyl)ation Signaling during Autophagy in Response to Nutrient Deprivation. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	39
14	Vasculogenic Mimicry: Become an Endothelial Cell "But Not So Much― Frontiers in Oncology, 2019, 9, 803.	2.8	77
15	PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism. Cell Death and Disease, 2019, 10, 51.	6.3	9
16	Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Molecular Cancer, 2018, 17, 122.	19.2	100
17	Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Molecular Cancer, 2017, 16, 65.	19.2	156
18	Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function. Stem Cells International, 2017, 2017, 1-15.	2.5	42

#	Article	IF	CITATIONS
19	Role of Poly(ADP-Ribose) in Catalyzing Starvation-Induced Autophagy. , 2016, , 99-118.		2
20	Autophagy requires poly(adp-ribosyl)ation-dependent AMPK nuclear export. Cell Death and Differentiation, 2016, 23, 2007-2018.	11.2	44
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Enhancing tumor-targeting monoclonal antibodies therapy by PARP inhibitors. OncoImmunology, 2016, 5, e1065370.	4.6	6
23	Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis. Molecular Cancer, 2015, 14, 148.	19.2	31
24	Deciphering the Insights of Poly(ADP-Ribosylation) in Tumor Progression. Medicinal Research Reviews, 2015, 35, 678-697.	10.5	30
25	Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS ONE, 2015, 10, e0139812.	2.5	10
26	Direct and bystander radiation effects: A biophysical model and clinical perspectives. Cancer Letters, 2015, 356, 5-16.	7.2	25
27	PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget, 2015, 6, 4790-4803.	1.8	37
28	Human mesenchymal stem cells enhance the systemic effects of radiotherapy. Oncotarget, 2015, 6, 31164-31180.	1.8	26
29	Interaction between PARP-1 and HIF-2 \hat{I} in the hypoxic response. Oncogene, 2014, 33, 891-898.	5.9	47
30	Growth and spontaneous differentiation of umbilical-cord stromal stem cells on activated carbon cloth. Journal of Materials Chemistry B, 2013, 1, 3359.	5.8	5
31	Poly(ADP-ribose) signaling in cell death. Molecular Aspects of Medicine, 2013, 34, 1153-1167.	6.4	218
32	PARP-1 Regulates Metastatic Melanoma through Modulation of Vimentin-induced Malignant Transformation. PLoS Genetics, 2013, 9, e1003531.	3.5	115
33	PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia. Scientific World Journal, The, 2013, 2013, 1-8.	2.1	13
34	The importance of bystander effects in radiation therapy in melanoma skin-cancer cells and umbilical-cord stromal stem cells. Radiotherapy and Oncology, 2012, 102, 450-458.	0.6	36
35	Nitric oxide modulates hypoxia-inducible factor-1 and poly(ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. Journal of Applied Physiology, 2012, 112, 816-823.	2.5	24
36	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122

#	Article	IF	CITATIONS
37	ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Research, 2012, 22, 1181-1198.	12.0	201
38	Inhibition of poly (ADP-ribose) polymerase-1 enhances doxorubicin activity against liver cancer cells. Cancer Letters, 2011, 301, 47-56.	7.2	25
39	Poly(ADP-ribose)-dependent regulation of Snail1 protein stability. Oncogene, 2011, 30, 4365-4372.	5.9	55
40	Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta, 2011, 32, 86-95.	1.5	52
41	Hypermethylated 14-3-3- if and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer, 2010, 10, 217.	2.6	61
42	Inhibition of poly adenosine diphosphate-ribose polymerase decreases hepatocellular carcinoma growth by modulation of tumor-related gene expression. Hepatology, 2010, 51, 255-266.	7.3	61
43	Contextual Synthetic Lethality of Cancer Cell Kill Based on the Tumor Microenvironment. Cancer Research, 2010, 70, 8045-8054.	0.9	211
44	PARP-1 is involved in autophagy induced by DNA damage. Autophagy, 2009, 5, 61-74.	9.1	211
45	PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases. Free Radical Biology and Medicine, 2009, 47, 13-26.	2.9	168
46	Poly(ADPâ€ribose) polymeraseâ€1 modulation of <i>in vivo</i> response of brain hypoxiaâ€inducible factorâ€1 to hypoxia/reoxygenation is mediated by nitric oxide and factor inhibiting HIF. Journal of Neurochemistry, 2009, 111, 150-159.	3.9	30
47	Activated carbon cloth as support for mesenchymal stem cell growth and differentiation to osteocytes. Carbon, 2009, 47, 3574-3577.	10.3	24
48	Poly[ADP-Ribose] Polymerase-1 Expression Is Related To Cold Ischemia, Acute Tubular Necrosis, and Delayed Renal Function In Kidney Transplantation. PLoS ONE, 2009, 4, e7138.	2.5	13
49	Abstract A115: Contextual synthetic lethality: Repairâ€deficient hypoxic tumor cells are sensitized to poly(ADPâ€ribose) polymerase (PARP) inhibition. , 2009, , .		0
50	Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment. Clinical and Translational Oncology, 2008, 10, 318-323.	2.4	52
51	PARPâ€1 modulates deferoxamineâ€induced HIFâ€1α accumulation through the regulation of nitric oxide and oxidative stress. Journal of Cellular Biochemistry, 2008, 104, 2248-2260.	2.6	35
52	Quantitative detection of methylated ESR1 and 14-3-3-σ gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biology and Therapy, 2008, 7, 958-965.	3.4	58
53	Modulation of Transcription by PARP-1: Consequences in Carcinogenesis and Inflammation. Current Medicinal Chemistry, 2007, 14, 1179-1187.	2.4	126
54	Poly(ADP-Ribose) Polymerase Expression in Kidney Transplantation: From Alfa (α) to Omega (Ω). Transplantation Proceedings, 2007, 39, 2099-2101.	0.6	7

#	Article	IF	CITATIONS
55	Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Molecular Biology, 2007, 8, 29.	3.0	144
56	Therapeutic Effect of a Poly(ADP-Ribose) Polymerase-1 Inhibitor on Experimental Arthritis by Downregulating Inflammation and Th1 Response. PLoS ONE, 2007, 2, e1071.	2.5	40
57	Inhibition of Poly(ADP-Ribose) Polymerase Modulates Tumor-Related Gene Expression, Including Hypoxia-Inducible Factor-1 Activation, during Skin Carcinogenesis. Cancer Research, 2006, 66, 5744-5756.	0.9	127
58	PARP-1-dependent 3-nitrotyrosine protein modification after DNA damage. Journal of Cellular Biochemistry, 2005, 96, 709-715.	2.6	7
59	PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochemical Journal, 2005, 386, 119-125.	3.7	86
60	Role of Poly-(ADP-Ribose) Polymerase in Transplant Acute Tubular Necrosis and Its Relationship With Delayed Renal Function. Transplantation Proceedings, 2005, 37, 1421-1423.	0.6	7
61	Role of Poly (ADP-Ribose) Polymerase in Kidney Transplant and Its Relationship With Delayed Renal Function: Multivariate Analysis. Transplantation Proceedings, 2005, 37, 3684-3687.	0.6	5
62	Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes. Breast Cancer Research, 2005, 7, R690-8.	5.0	56
63	Transcription regulation of TNF-Â-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells. Nucleic Acids Research, 2004, 32, 757-766.	14.5	66
64	Crosstalk between PARP-1 and NF-Î⁰B modulates the promotion of skin neoplasia. Oncogene, 2004, 23, 5275-5283.	5.9	54
65	Correlation of morphological findings with functional reserve in the aging donor: role of the poly (ADP-ribose) polymerase. Transplantation Proceedings, 2004, 36, 733-735.	0.6	6
66	Interactions between radiotherapy and endocrine therapy in breast cancer Endocrine-Related Cancer, 2002, 9, 197-205.	3.1	5
67	Assessing the Use of p16INK4a Promoter Gene Methylation in Serum for Detection of Bladder Cancer. European Urology, 2002, 42, 622-630.	1.9	66
68	PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene, 2002, 21, 1108-1116.	5.9	112
69	Apoptosis of haematopoietic cells upon thymidylate synthase inhibition is independent of p53 accumulation and CD95–CD95 ligand interaction. Biochemical Journal, 2001, 353, 101-108.	3.7	10
70	Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO Journal, 2001, 20, 3535-3543.	7.8	69
71	Apoptosis of haematopoietic cells upon thymidylate synthase inhibition is independent of p53 accumulation and CD95-CD95 ligand interaction. Biochemical Journal, 2001, 353, 101-108.	3.7	3
72	Apoptosis of haematopoietic cells upon thymidylate synthase inhibition is independent of p53 accumulation and CD95‒CD95 ligand interaction. Biochemical Journal, 2000, 353, 101.	3.7	4

#	Article	IF	CITATIONS
73	Title is missing!. Molecular and Cellular Biochemistry, 1999, 193, 53-60.	3.1	24
74	Poly(ADP-Ribose) Polymerase in the Cellular Response to DNA Damage, Apoptosis, and Disease. American Journal of Human Genetics, 1999, 64, 1282-1288.	6.2	133
75	Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie, 1999, 81, 69-75.	2.6	317
76	Resistance to endotoxic shock as a consequence of defective NF-kappa B activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO Journal, 1999, 18, 4446-4454.	7.8	534
77	A dual approach in the study of poly (ADP-ribose) polymerase: In vitro random mutagenesis and generation of deficient mice. , 1999, , 53-60.		9
78	A dual approach in the study of poly (ADP-ribose) polymerase: in vitro random mutagenesis and generation of deficient mice. Molecular and Cellular Biochemistry, 1999, 193, 53-60.	3.1	8
79	DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Research, 1998, 26, 2644-2649.	14.5	312
80	Importance of Poly(ADP-ribose) Polymerase and Its Cleavage in Apoptosis. Journal of Biological Chemistry, 1998, 273, 33533-33539.	3.4	665
81	Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair. Nucleic Acids and Molecular Biology, 1998, , 83-102.	0.2	2
82	La poly(ADP-ribose) polymérase : un facteur de survie Medecine/Sciences, 1998, 14, 1196.	0.2	2
83	Overexpression of a Heterologous Thymidine Kinase Delays Apoptosis Induced by Factor Deprivation and Inhibitors of Deoxynucleotide Metabolism. Journal of Biological Chemistry, 1997, 272, 10624-10630.	3.4	27
84	Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7303-7307.	7.1	991
85	Effects of Starvation, Diabetes and Carbon Tetrachloride Intoxication on Rat Kidney Cortex and Liver Pyruvate Carboxylase Levels. Archives of Physiology and Biochemistry, 1996, 104, 845-850.	2.1	18
86	Regulation of the salvage pathway of deoxynucleotides synthesis in apoptosis induced by growth factor deprivation. Biochemical Journal, 1996, 316, 421-425.	3.7	19
87	dNTP pools imbalance as a signal to initiate apoptosis. Experientia, 1996, 52, 995-1000.	1.2	39
88	Activation-induced apoptosis in Jurkat cells through a myc-independent mechanism. Molecular Immunology, 1995, 32, 947-955.	2.2	17
89	Citrate inhibition of rat-kidney cortex phosphofructokinase. Molecular and Cellular Biochemistry, 1994, 135, 123-128.	3.1	9
90	Mitochondrial pyruvate metabolism in liver and kidney during acidosis. Cell Biochemistry and Function, 1994, 12, 229-235.	2.9	3

#	Article	IF	CITATIONS
91	Regulation of rat-kidney cortex fructose-1,6-bisphosphatase activity. I. Effects of fructose-2,6-bisphosphate and divalent cations. International Journal of Biochemistry & Cell Biology, 1993, 25, 1963-1968.	0.5	8
92	Regulation of rat-kidney cortex fructose-1,6-bisphosphatase activity. II. Effects of adenine nucleotides. International Journal of Biochemistry & Cell Biology, 1993, 25, 1969-1974.	0.5	4
93	Bcl-2 Oncogene Protects a Bone Marrow-Derived Pre-B Cell Line from 5′-Fluor,2′-deoxyuridine-Induced Apoptosis. Biochemical and Biophysical Research Communications, 1993, 194, 126-132.	2.1	27
94	Regulation of Rat-Renal Cortex Phosphofructokinase Activity by pH. Enzyme & Protein, 1993, 47, 99-104.	1.4	2
95	Effects of AMP and fructose 2,6-bisphosphate on fluxes between glucose 6-phosphate and triose-phosphate in renal cortical extracts. Journal of Biological Chemistry, 1993, 268, 19352-7.	3.4	5
96	Induction of resistance to endothelin-1's biochemical actions by elevated glucose levels in retinal pericytes. Diabetes, 1992, 41, 1533-1539.	0.6	40
97	Kinetic characterization of phosphofructokinase isolated from rat kidney cortex. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 98, 495-500.	0.2	3
98	Distribution of pyruvate carboxylase along the rat nephron: An immunological and enzymatic study. Kidney International, 1991, 39, 1162-1167.	5.2	7
99	PARP-1 modifies the effectiveness of p53-mediated DNA damage response. , 0, .		1