
Monika Anna Olszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inflorescences, leaves and fruits of three Sorbus species. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 629-635.	2.8	93
2	Antioxidant activity of inflorescences, leaves and fruits of three <i>Sorbus</i> species in relation to their polyphenolic composition. Natural Product Research, 2009, 23, 1507-1521.	1.8	62
3	Profiling of Phenolic Compounds and Antioxidant Activity of Dry Extracts from the Selected Sorbus Species. Molecules, 2012, 17, 3093-3113.	3.8	59
4	Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, Pro-inflammatory Enzymes Inhibition and Protective Effects Against Oxidative Stress In Vitro. Frontiers in Pharmacology, 2017, 8, 680.	3.5	57
5	Establishment of Hairy Root Cultures ofRhaponticum carthamoides(Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives. BioMed Research International, 2015, 2015, 1-11.	1.9	43
6	New validated highâ€performance liquid chromatographic method for simultaneous analysis of ten flavonoid aglycones in plant extracts using a <scp>C</scp> 18 fused ore column and acetonitrile–tetrahydrofuran gradient. Journal of Separation Science, 2012, 35, 2174-2183.	2.5	34
7	Polyphenolic Profile, Antioxidant and Anti-Inflammatory Activity of Eastern Teaberry (Gaultheria) Tj ETQq1 1 0.784	1314 rgBT 3.8	/gyerlock 1
8	Establishment of hairy root cultures of Salvia bulleyana Diels for production of polyphenolic compounds. Journal of Biotechnology, 2020, 318, 10-19.	3.8	30
9	The identification and quantitative determination of rosmarinic acid and salvianolic acid B in hairy root cultures of Dracocephalum forrestii W.W. Smith. Industrial Crops and Products, 2016, 91, 125-131.	5.2	29
10	Metabolite profiling and antioxidant activity of <i>Prunus padus</i> L. flowers and leaves. Natural Product Research, 2011, 25, 1115-1131.	1.8	28
11	Sorbus domestica L. leaf extracts as functional products: phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. Journal of Functional Foods, 2018, 40, 207-218.	3.4	28
12	A validated 1H qNMR method for direct and simultaneous quantification of esculin, fraxin andÂ(–)-epicatechin in Hippocastani cortex. Talanta, 2019, 192, 263-269.	5.5	28
13	Application of HPCCC, UHPLC-PDA-ESI-MS 3 and HPLC-PDA methods for rapid, one-step preparative separation and quantification of rutin in Forsythia flowers. Industrial Crops and Products, 2015, 76, 86-94.	5.2	27
14	Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity. Molecules, 2017, 22, 412.	3.8	27
15	Assessment of the Content of Phenolics and Antioxidant Action of Inflorescences and Leaves of Selected Species from the Genus Sorbus Sensu Stricto. Molecules, 2010, 15, 8769-8783.	3.8	26
16	Phenolic constituents of the inflorescences of Sorbus torminalis (L.) Crantz. Phytochemistry Letters, 2011, 4, 151-157.	1.2	26
17	Sorbus domestica Leaf Extracts and Their Activity Markers: Antioxidant Potential and Synergy Effects in Scavenging Assays of Multiple Oxidants. Molecules, 2019, 24, 2289.	3.8	25
18	Activity-guided isolation and identification of free radical-scavenging components from various leaf extracts of <i>Sorbus aria</i> (L.) Crantz. Natural Product Research, 2012, 26, 243-254.	1.8	24

#	Article	IF	CITATIONS
19	Phenolic Profile and Antioxidant Potential of Leaves from Selected Cotoneaster Medik. Species. Molecules, 2016, 21, 688.	3.8	23
20	Simultaneous determination of flavonoids and phenylethanoids in the flowers of <i>Verbascum densiflorum</i> and <i>V. phlomoides</i> by highâ€performance liquid chromatography. Phytochemical Analysis, 2010, 21, 150-156.	2.4	22
21	Salicylate and Procyanidin-Rich Stem Extracts of Gaultheria procumbens L. Inhibit Pro-Inflammatory Enzymes and Suppress Pro-Inflammatory and Pro-Oxidant Functions of Human Neutrophils Ex Vivo. International Journal of Molecular Sciences, 2019, 20, 1753.	4.1	22
22	Variability of sinapic acid derivatives during germination and their contribution to antioxidant and anti-inflammatory effects of broccoli sprouts on human plasma and human peripheral blood mononuclear cells. Food and Function, 2020, 11, 7231-7244.	4.6	21
23	Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells. Frontiers in Pharmacology, 2018, 9, 401.	3.5	20
24	New insights into antioxidant activity of Prunus spinosa flowers: Extracts, model polyphenols and their phenolic metabolites in plasma towards multiple in vivo-relevant oxidants. Phytochemistry Letters, 2019, 30, 288-295.	1.2	20
25	Cytokinin-Based Tissue Cultures for Stable Medicinal Plant Production: Regeneration and Phytochemical Profiling of Salvia bulleyana Shoots. Biomolecules, 2021, 11, 1513.	4.0	18
26	Seasonal variation in phenylpropanoid biosynthesis and in vitro antioxidant activity of Sorbus domestica leaves: Harvesting time optimisation for medicinal application. Industrial Crops and Products, 2020, 156, 112858.	5.2	17
27	Simultaneous quantification of thirty polyphenols in blackthorn flowers and dry extracts prepared thereof: HPLC-PDA method development and validation for quality control. Journal of Pharmaceutical and Biomedical Analysis, 2020, 184, 113121.	2.8	16
28	Identification and quantification of phenolic compounds in Salvia cadmica Boiss. and their biological potential. Industrial Crops and Products, 2021, 160, 113113.	5.2	16
29	Polyphenol-Enriched Extracts of Prunus spinosa Fruits: Anti-Inflammatory and Antioxidant Effects in Human Immune Cells Ex Vivo in Relation to Phytochemical Profile. Molecules, 2022, 27, 1691.	3.8	16
30	Variation in polyphenolic profile and in vitro antioxidant activity of eastern teaberry (Gaultheria) Tj ETQq0 0 0 rg	;BT/Qverlo 1.2	ock_10 Tf 50 3
31	Polyphenolic profile, antioxidant activity, and pro-inflammatory enzymes inhibition of leaves, flowers, bark and fruits of Cotoneaster integerrimus: A comparative study. Phytochemistry Letters, 2019, 30, 349-355.	1.2	15
32	Phytochemical Profile and Antioxidant Activity of Aerial and Underground Parts of Salvia bulleyana Diels. Plants. Metabolites, 2020, 10, 497.	2.9	15
33	Optimisation of preparative HPLC separation of four isomeric kaempferol diglycosides from Prunus spinosa L. by application of the response surface methodology. Phytochemistry Letters, 2017, 20, 415-424.	1.2	14
34	Contribution of Individual Polyphenols to Antioxidant Activity of Cotoneaster bullatus and Cotoneaster zabelii Leaves—Structural Relationships, Synergy Effects and Application for Quality Control. Antioxidants, 2020, 9, 69.	5.1	14
35	Potential Activity Mechanisms of Aesculus hippocastanum Bark: Antioxidant Effects in Chemical and Biological In Vitro Models. Antioxidants, 2021, 10, 995.	5.1	13

Further flavonoids from the flowers of Prunus spinosa L. Acta Poloniae Pharmaceutica, 2002, 59, 133-7. 0.1 13

#	Article	IF	CITATIONS
37	Multifunctional Phytocompounds in <i>Cotoneaster</i> Fruits: Phytochemical Profiling, Cellular Safety, Anti-Inflammatory and Antioxidant Effects in Chemical and Human Plasma Models <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	12
38	Polyphenol-Rich Extracts from Cotoneaster Leaves Inhibit Pro-Inflammatory Enzymes and Protect Human Plasma Components against Oxidative Stress In Vitro. Molecules, 2018, 23, 2472.	3.8	12
39	Novel insight into biological activity and phytochemical composition of Sorbus aucuparia L. fruits: Fractionated extracts as inhibitors of protein glycation and oxidative/nitrative damage of human plasma components. Food Research International, 2021, 147, 110526.	6.2	12
40	Flavonoids from Prunus serotina Ehrh. Acta Poloniae Pharmaceutica, 2005, 62, 127-33.	0.1	12
41	Identification of bioactivity markers of Sorbus domestica leaves in chromatographic, spectroscopic and biological capacity tests: Application for the quality control. Phytochemistry Letters, 2019, 30, 278-287.	1.2	11
42	An efficient plant regeneration from Rhaponticum carthamoides transformed roots, enhanced caffeoylquinic acid derivatives production in pRi-transformed plants and their biological activity. Industrial Crops and Products, 2019, 129, 327-338.	5.2	11
43	Polyphenols and Maillard Reaction Products in Dried Prunus spinosa Fruits: Quality Aspects and Contribution to Anti-Inflammatory and Antioxidant Activity in Human Immune Cells Ex Vivo. Molecules, 2022, 27, 3302.	3.8	11
44	Quality evaluation of golden saxifrage (Chrysosplenium alternifolium L.) through simultaneous determination of four bioactive flavonoids by high-performance liquid chromatography with PDA detection. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 771-777.	2.8	10
45	The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules, 2022, 27, 992.	3.8	10
46	Flavonoid profile of Sorbus intermedia. Chemistry of Natural Compounds, 2009, 45, 722-724.	0.8	9
47	Quantitative Determination of Ellagic Acid and Gallic Acid in Geum Rivale L. and G. Urbanum L Acta Biologica Cracoviensia Series Botanica, 2015, 56, 74-78.	0.5	9
48	The Effect of Standardised Flower Extracts of <i>Sorbus aucuparia</i> L. on Proinflammatory Enzymes, Multiple Oxidants, and Oxidative/Nitrative Damage of Human Plasma Components In Vitro. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-18.	4.0	9
49	High-performance liquid chromatographic identification of flavonoid monoglycosides from Prunus serotina ehrh. Acta Poloniae Pharmaceutica, 2005, 62, 435-41.	0.1	9
50	Application of Response Surface Methodology for Optimisation of Simultaneous UHPLC-PDA Determination of Oleanolic and Ursolic Acids and Standardisation of Ericaceae Medicinal Plants. Applied Sciences (Switzerland), 2016, 6, 244.	2.5	8
51	The Effects of Prunus spinosa L. Flower Extracts, Model Polyphenols and Phenolic Metabolites on Oxidative/Nitrative Modifications of Human Plasma Components with Particular Emphasis on Fibrinogen In Vitro. Antioxidants, 2021, 10, 581.	5.1	8
52	Screening for the Active Anti-Inflammatory and Antioxidant Polyphenols of Gaultheria procumbens and Their Application for Standardisation: From Identification through Cellular Studies to Quantitative Determination. International Journal of Molecular Sciences, 2021, 22, 11532.	4.1	8
53	The Effect of Standardised Leaf Extracts of Gaultheria procumbens on Multiple Oxidants, Inflammation-Related Enzymes, and Pro-Oxidant and Pro-Inflammatory Functions of Human Neutrophils. Molecules, 2022, 27, 3357.	3.8	8
54	Evaluation of Antioxidant Activity, and Quantitative Estimation of Flavonoids, Saponins and Phenols in Crude Extract and Dry Fractions of Medicago lupulina Aerial Parts. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	7

#	Article	IF	CITATIONS
55	Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of <i>Grindelia integrifolia</i> DC. Natural Product Research, 2019, 33, 1535-1540.	1.8	7
56	Development and validation of UHPLC-PDA method for simultaneous determination of bioactive polyphenols of horse-chestnut bark using numerical optimization with MS Excel Solver. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190, 113544.	2.8	7
57	Lipophilic extracts from leaves, inflorescences and fruits of Prunus padus L. as potential sources of corosolic, ursolic and oleanolic acids with anti-inflammatory activity. Natural Product Research, 2021, 35, 2263-2268.	1.8	7
58	In vitro antioxidant activity and total phenolic content of the inflorescences, leaves and fruits of Sorbus torminalis (L.) Crantz. Acta Poloniae Pharmaceutica, 2011, 68, 945-53.	0.1	7
59	Rare Ellagic Acid Sulphate Derivatives from the Rhizome of Geum rivale L.—Structure, Cytotoxicity, and Validated HPLC-PDA Assay. Applied Sciences (Switzerland), 2017, 7, 400.	2.5	6
60	Biological and chemical insight into <i>Gaultheria procumbens</i> fruits: a rich source of anti-inflammatory and antioxidant salicylate glycosides and procyanidins for food and functional application. Food and Function, 2020, 11, 7532-7544.	4.6	6
61	Data on the optimization and validation of HPLC-PDA method for quantification of thirty polyphenols in blackthorn flowers and dry extracts prepared thereof. Data in Brief, 2020, 29, 105319.	1.0	6
62	Evaluation of antioxidant activity, and quantitative estimation of flavonoids, saponins and phenols in crude extract and dry fractions of Medicago lupulina aerial parts. Natural Product Communications, 2015, 10, 483-6.	0.5	6
63	In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana. International Journal of Molecular Sciences, 2022, 23, 7771.	4.1	6
64	Variation in the phenolic content and in vitro antioxidant activity of Sorbus aucuparia leaf extracts during vegetation. Acta Poloniae Pharmaceutica, 2011, 68, 937-44.	0.1	5
65	Chemical profile and antibacterial activity of essential oils from leaves and fruits of Gaultheria procumbens L. cultivated in Poland. Acta Poloniae Pharmaceutica, 2019, 76, 93-102.	0.1	4
66	Bioactivity Potential of Aesculus hippocastanum L. Flower: Phytochemical Profile, Antiradical Capacity and Protective Effects on Human Plasma Components under Oxidative/Nitrative Stress In Vitro. Pharmaceuticals, 2021, 14, 1301.	3.8	3
67	The Effects of Sorbus aucuparia L. Fruit Extracts on Oxidative/Nitrative Modifications of Human Fibrinogen, Impact on Enzymatic Properties of Thrombin, and Hyaluronidase Activity In Vitro. Antioxidants, 2021, 10, 2009.	5.1	3
68	UHPLC-PDA-ESI-MS profile of phenolic compounds in the aerial parts of <i>Cuphea ingrata</i> Cham. & Schltdl Natural Product Research, 2022, 36, 3721-3725.	1.8	1
69	Therapeutic potential of chastetree (Vitex agnus-castus) in gynecological diseases – a review of the current state of knowledge. Farmacja Polska, 2021, 77, 491-502.	0.1	0