
Ying Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166146/publications.pdf Version: 2024-02-01

YING LAL

#	Article	IF	CITATIONS
1	ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature, 2015, 520, 563-566.	27.8	460
2	Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature, 2015, 525, 62-67.	27.8	268
3	Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4087-4092.	7.1	233
4	Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Neuron, 2017, 95, 591-607.e10.	8.1	185
5	Molecular Mechanisms of Fast Neurotransmitter Release. Annual Review of Biophysics, 2018, 47, 469-497.	10.0	133
6	SNARE-mediated membrane fusion in autophagy. Seminars in Cell and Developmental Biology, 2016, 60, 97-104.	5.0	101
7	Fusion pore formation and expansion induced by Ca ²⁺ and synaptotagmin 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1333-1338.	7.1	94
8	Versatile Structures of α-Synuclein. Frontiers in Molecular Neuroscience, 2016, 9, 48.	2.9	92
9	Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms. ELife, 2014, 3, e03756.	6.0	89
10	A single-vesicle content mixing assay for SNARE-mediated membrane fusion. Nature Communications, 2010, 1, 54.	12.8	73
11	The pre-synaptic fusion machinery. Current Opinion in Structural Biology, 2019, 54, 179-188.	5.7	72
12	Solution single-vesicle assay reveals PIP ₂ -mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO Journal, 2012, 31, 2144-2155.	7.8	71
13	Nonaggregated α-Synuclein Influences SNARE-Dependent Vesicle Docking via Membrane Binding. Biochemistry, 2014, 53, 3889-3896.	2.5	70
14	C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proceedings of the United States of America, 2016, 113, E7590-E7599.	7.1	66
15	Morphologies of synaptic protein membrane fusion interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9110-9115.	7.1	51
16	Ca2+-Triggered Synaptic Vesicle Fusion Initiated by Release of Inhibition. Trends in Cell Biology, 2018, 28, 631-645.	7.9	46
17	N-terminal domain of complexin independently activates calcium-triggered fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4698-E4707.	7.1	44
18	Phosphorylation of residues inside the <scp>SNARE</scp> complex suppresses secretory vesicle fusion. EMBO Journal, 2016, 35, 1810-1821.	7.8	40

Ying Lai

#	Article	IF	CITATIONS
19	Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature, 2022, 603, 949-956.	27.8	39
20	Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. ELife, 2016, 5, .	6.0	36
21	The synaptotagmin 1 linker may function as an electrostatic zipper that opens for docking but closes for fusion pore opening. Biochemical Journal, 2013, 456, 25-33.	3.7	26
22	Molecular origins of synaptotagmin 1 activities on vesicle docking and fusion pore opening. Scientific Reports, 2015, 5, 9267.	3.3	20
23	Synaptotagmin 1 and Ca2+ drive trans SNARE zippering. Scientific Reports, 2014, 4, 4575.	3.3	19
24	The importance of an asymmetric distribution of acidic lipids for synaptotagmin 1 function as a Ca2+ sensor. Biochemical Journal, 2012, 443, 223-229.	3.7	18
25	Munc18a Does Not Alter Fusion Rates Mediated by Neuronal SNAREs, Synaptotagmin, and Complexin. Journal of Biological Chemistry, 2015, 290, 10518-10534.	3.4	17
26	Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Physical Biology, 2015, 12, 025003.	1.8	12
27	SNAREâ€Reconstituted Liposomes as Controllable Zeptoliter Nanoreactors for Macromolecules. Advanced Biology, 2017, 1, e1600018.	3.0	11
28	A Proteoliposome Method for Assessing Nanotoxicity on Synaptic Fusion and Membrane Integrity. Small Methods, 2017, 1, 1700207.	8.6	10
29	Screening of Hydrocarbon-Stapled Peptides for Inhibition of Calcium-Triggered Exocytosis. Frontiers in Pharmacology, 0, 13, .	3.5	6
30	Synaptotagmin 1 drives Trans SNARE Zippering with Ca2+. Biophysical Journal, 2011, 100, 327a.	0.5	0
31	Munc13 And Munc18 Cooperate to Properly Assemble SNAREs for Fast Neurotransmitter Release. Biophysical Journal, 2017, 112, 90a.	0.5	0