Lei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661440/publications.pdf

Version: 2024-02-01

236925 276875 6,461 42 25 41 citations h-index g-index papers 43 43 43 6655 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Two-dimensional Dirac materials: Tight-binding lattice models and material candidates. ChemPhysMater, 2023, 2, 30-42.	2.8	15
2	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	21.0	13
3	Chemical control of spin–lattice relaxation to discover a room temperature molecular qubit. Chemical Science, 2022, 13, 7034-7045.	7.4	16
4	A mitochondria-specific fluorescent probe for rapidly assessing cell viability. Talanta, 2021, 221, 121653.	5 . 5	5
5	Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nature Materials, 2021, 20, 222-228.	27.5	239
6	An interrelated CataFlower enzyme system for sensitively monitoring sweat glucose. Talanta, 2021, 235, 122799.	5. 5	8
7	A glutathione-triggered precision explosive system for improving tumor chemosensitivity. Nano Research, 2021, 14, 2372.	10.4	4
8	Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order. Chemistry of Materials, 2021, 33, 8712-8721.	6.7	8
9	Predicting Multi-Epitope Vaccine Candidates Using Natural Language Processing and Deep Learning. , 2021, , .		0
10	A stimuli-responsive combination therapy for recovering p53-inactivation associated drug resistance. Materials Science and Engineering C, 2020, 108 , 110403 .	7.3	11
11	Bioactive multi-engineered hydrogel offers simultaneous promise against antibiotic resistance and wound damage. International Journal of Biological Macromolecules, 2020, 164, 4466-4474.	7.5	22
12	Nanosized Phaseâ€Changeable "Sonocyte―for Promoting Ultrasound Assessment. Small, 2020, 16, 2002950.	10.0	13
13	Mesenchymal Stem Cells Functionalized Sonodynamic Treatment for Improving Therapeutic Efficacy and Compliance of Orthotopic Oral Cancer. Advanced Materials, 2020, 32, e2005295.	21.0	62
14	An octopus-mimic PEGylated peptide as a specific integrin $\hat{l}\pm v\hat{l}^23$ inhibitor for preventing tumor progression. Chemical Communications, 2020, 56, 2178-2181.	4.1	5
15	High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance. Matter, 2020, 2, 711-722.	10.0	115
16	Waterproof molecular monolayers stabilize 2D materials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20844-20849.	7.1	32
17	Reversible redox switching of magnetic order and electrical conductivity in a 2D manganese benzoquinoid framework. Chemical Science, 2019, 10, 4652-4661.	7.4	61
18	High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances, 2018, 4, eaat5780.	10.3	167

#	Article	IF	CITATIONS
19	Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 7411-7414.	13.7	204
20	Coordination-induced reversible electrical conductivity variation in the MOF-74 analogue Fe ₂ (DSBDC). Dalton Transactions, 2018, 47, 11739-11743.	3.3	27
21	2D Conductive Iron-Quinoid Magnets Ordering up to $\langle i > T < i > c < sub > c < sub > = 105 K via Heterogenous Redox Chemistry. Journal of the American Chemical Society, 2017, 139, 4175-4184.$	13.7	196
22	High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks. Chemical Science, 2017, 8, 2859-2867.	7.4	86
23	Is iron unique in promoting electrical conductivity in MOFs?. Chemical Science, 2017, 8, 4450-4457.	7.4	176
24	Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy. Chemical Science, 2017, 8, 7312-7323.	7.4	20
25	A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity. Joule, 2017, 1, 168-177.	24.0	159
26	Signature of Metallic Behavior in the Metal–Organic Frameworks M ₃ (hexaiminobenzene) ₂ (M = Ni, Cu). Journal of the American Chemical Society, 2017, 139, 13608-13611.	13.7	324
27	Conetronics in 2D metal-organic frameworks: double/half Dirac cones and quantum anomalous Hall effect. 2D Materials, 2017, 4, 015015.	4.4	41
28	Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged Mn ^{II} Chain Compound. Journal of the American Chemical Society, 2016, 138, 6583-6590.	13.7	47
29	Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nature Communications, 2016, 7, 10942.	12.8	577
30	Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd ₂ (TTFTB) as a Case Study. Journal of the American Chemical Society, 2016, 138, 14772-14782.	13.7	221
31	Elektrisch leitfÄĦige poröse Metallâ€organische Gerüstverbindungen. Angewandte Chemie, 2016, 128, 3628-3642.	2.0	180
32	Electrically Conductive Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 3566-3579.	13.8	1,444
33	Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 1774-1777.	13.7	360
34	Million-Fold Electrical Conductivity Enhancement in Fe ₂ (DEBDC) versus Mn ₂ (DEBDC) (E = S, O). Journal of the American Chemical Society, 2015, 137, 6164-6167.	13.7	291
35	Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions. Inorganic Chemistry Frontiers, 2015, 2, 904-911.	6.0	58
36	High Electrical Conductivity in Ni ₃ (2,3,6,7,10,11-hexaiminotriphenylene) ₂ , a Semiconducting Metal–Organic Graphene Analogue. Journal of the American Chemical Society, 2014, 136, 8859-8862.	13.7	893

#	Article	IF	CITATION
37	Mn ₂ (2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (â''Mn–Sâ'') _{â^ž} Chains and High Intrinsic Charge Mobility. Journal of the American Chemical Society, 2013, 135, 8185-8188.	13.7	291
38	A new optical and electrochemical sensor for fluoride ion based on the functionalized boron–dipyrromethene dye with tetrathiafulvalene moiety. Tetrahedron Letters, 2011, 52, 6157-6161.	1.4	35
39	Syntheses, structures, and properties of metal complexes involving π-conjugated tetrathiafulvalene–pyridine ligand. Polyhedron, 2011, 30, 2473-2478.	2.2	8
40	Syntheses, crystal structures, and characterization of heteronuclear complexes based on a versatile ligand with both acetylacetonate and bis(2-pyridyl) units. Inorganica Chimica Acta, 2011, 376, 36-43.	2.4	4
41	Mono―and Dinuclear Co/Ni Complexes Bearing Redoxâ€Active Tetrathiafulvaleneacetylacetonate Ligands – Syntheses, Crystal Structures, and Properties. European Journal of Inorganic Chemistry, 2011, 2011, 5173-5181.	2.0	11
42	Dinuclear rhenium(I) carbonyl complexes based on π-conjugated polypyridyl ligands with tetrathiafulvalenes: Syntheses, crystal structures, properties and DFT calculations. Journal of Organometallic Chemistry, 2011, 696, 3076-3085.	1.8	12