Zheng Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661427/publications.pdf Version: 2024-02-01

ZHENC CA

#	Article	IF	CITATIONS
1	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
2	THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA. Astronomical Journal, 2016, 151, 44.	4.7	582
3	THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION. Astrophysical Journal, Supplement Series, 2015, 221, 27.	7.7	153
4	Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at zÂ=Â2.3. Astrophysical Journal, 2017, 837, 71.	4.5	111
5	Mapping the Most Massive Overdensities through Hydrogen (MAMMOTH). II. Discovery of the Extremely Massive Overdensity BOSS1441 at zÂ=Â2.32. Astrophysical Journal, 2017, 839, 131.	4.5	84
6	PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT <i>z</i> â‰ ³ 7 USING <i>HUBBLE SPACE TELESCOPE</i> PURE PARALLEL OBSERVATIONS. Astrophysical Journal Letters, 2011, 728, L22.	8.3	78
7	A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY. Astrophysical Journal, 2016, 819, 24.	4.5	78
8	Evolution of the Cool Gas in the Circumgalactic Medium of Massive Halos: A Keck Cosmic Web Imager Survey of Lyα Emission around QSOs at zÂâ‰^Â2. Astrophysical Journal, Supplement Series, 2019, 245, 23.	7.7	76
9	Evidence for GN-z11 as a luminous galaxy at redshift 10.957. Nature Astronomy, 2021, 5, 256-261.	10.1	76
10	High Lyman Continuum Escape Fraction in a Lensed Young Compact Dwarf Galaxy at zÂ=Â2.5. Astrophysical Journal Letters, 2017, 837, L12.	8.3	74
11	The Faint End of the zÂ=Â5 Quasar Luminosity Function from the CFHTLS. Astronomical Journal, 2018, 155, 131.	4.7	74
12	MAPPING THE MOST MASSIVE OVERDENSITY THROUGH HYDROGEN (MAMMOTH). I. METHODOLOGY. Astrophysical Journal, 2016, 833, 135.	4.5	66
13	Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a "Normal,―Massive, Metal-rich Spiral Galaxy. Astrophysical Journal, 2018, 853, 57.	4.5	60
14	DISCOVERY OF EIGHT <i>z</i> â^¼ 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY OVERLAP REGIONS. Astronomical Journal, 2015, 149, 188.	4.7	55
15	Deep learning of quasar spectra to discover and characterize damped Lyα systems. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1151-1168.	4.4	52
16	Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016.	4.4	43
17	MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at zÂ=Â2.5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1977-1999.	4.4	43
18	Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at zÂ=Â2.45. Astrophysical Journal Letters, 2018, 861, L3.	8.3	41

ZHENG CAI

#	Article	IF	CITATIONS
19	MAHALO Deep Cluster Survey II. Characterizing massive forming galaxies in the Spiderweb protocluster at zÂ= 2.2. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5630-5650.	4.4	37
20	Initial Results from a Systematic Search for Changing-look Active Galactic Nuclei Selected via Mid-infrared Variability. Astrophysical Journal, 2020, 889, 46.	4.5	35
21	AN ULTRA-LUMINOUS QUASAR AT <i>z</i> = 5.363 WITH A TEN BILLION SOLAR MASS BLACK HOLE AND A METAL-RICH DLA AT <i>z</i> â^1⁄4 5. Astrophysical Journal Letters, 2015, 807, L9.	8.3	33
22	PROBING POPULATION III STARS IN GALAXY IOK-1 AT <i>z</i> = 6.96 THROUGH He II EMISSION. Astrophysical Journal Letters, 2011, 736, L28.	8.3	29
23	Lyα EMITTER GALAXIES AT zÂâ^¼Â2.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH. I. TRACING THE LARGE-S STRUCTURE VIA Lyα IMAGING ^{â^—} . Astrophysical Journal, Supplement Series, 2016, 226, 23.	CALE	28
24	The Third Data Release of the Beijing–Arizona Sky Survey. Astrophysical Journal, Supplement Series, 2019, 245, 4.	7.7	25
25	Overdensity of submillimeter galaxies around the <i>z</i> â‰f 2.3 MAMMOTH-1 nebula. Astronomy and Astrophysics, 2018, 620, A202.	5.1	21
26	The First Data Release of the Beijing-Arizona Sky Survey. Astronomical Journal, 2017, 153, 276.	4.7	20
27	Accelerated Galaxy Growth and Environmental Quenching in a Protocluster at z = 3.24. Astrophysical Journal, 2021, 911, 46.	4.5	19
28	The Cold Circumgalactic Environment of MAMMOTH-I: Dynamically Cold Gas in the Core of an Enormous Lyα Nebula. Astrophysical Journal, 2019, 887, 86.	4.5	19
29	A GLIMPSE AT QUASAR HOST GALAXY FAR-UV EMISSION USING DAMPED Lyα's AS NATURAL CORONAGRAPHS. Astrophysical Journal, 2014, 793, 139.	4.5	18
30	The Mass–Metallicity Relation at Cosmic Noon in Overdense Environments: First Results from the MAMMOTH–Grism HST Slitless Spectroscopic Survey. Astrophysical Journal, 2022, 926, 70.	4.5	18
31	Cosmic Galaxy-IGM H i Relation at zÂâ^1⁄4Â2–3 Probed in the COSMOS/UltraVISTA 1.6 Deg ² Field. Astrophysical Journal, 2017, 835, 281.	4.5	17
32	From large-scale environment to CGM angular momentum to star-forming activities – I. Star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3148-3162.	4.4	17
33	Massive Molecular Outflow and 100 kpc Extended Cold Halo Gas in the Enormous Lyα Nebula of QSO 1228+3128. Astrophysical Journal Letters, 2021, 922, L29.	8.3	16
34	The faint host galaxies of C IV absorbers at <i>z</i> > 5. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3223-3237.	4.4	15
35	Statistical Correlation between the Distribution of Lyα Emitters and Intergalactic Medium H i at zÂâ^1⁄4Â2.2 Mapped by the Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2021, 907, 3.	4.5	15
36	A Detailed Study of Massive Galaxies in a Protocluster at zÂ=Â3.13. Astrophysical Journal, 2020, 899, 79.	4.5	15

ZHENG CAI

#	Article	IF	CITATIONS
37	MAMMOTH: confirmation of two massive galaxy overdensities at <i>z</i> = 2.24 with Hα emitters. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4354-4364.	4.4	14
38	Constraining C iii] Emission in a Sample of Five Luminous zÂ=Â5.7 Galaxies. Astrophysical Journal Letters, 2017, 838, L22.	8.3	13
39	Probing the Metal Enrichment of the Intergalactic Medium at zÂ=Â5–6 Using the Hubble Space Telescope. Astrophysical Journal Letters, 2017, 849, L18.	8.3	13
40	Spectroscopic Confirmation of Two Extremely Massive Protoclusters, BOSS1244 and BOSS1542, at z = 2.24. Astrophysical Journal, 2021, 915, 32.	4.5	13
41	CONSTRAINING VERY HIGH MASS POPULATION III STARS THROUGH He II EMISSION IN GALAXY BDF-521 AT <i>z</i> = 7.01. Astrophysical Journal Letters, 2015, 799, L19.	8.3	12
42	A possible bright ultraviolet flash from a galaxy at redshift z â‰^ 11. Nature Astronomy, 2021, 5, 262-26	5710.1	12
43	Three-dimensional Distribution Map of H i Cas and Galaxies around an Enormous Lyα Nebula and Three QSOs at zÂ=Â2.3 Revealed by the H i Tomographic Mapping Technique. Astrophysical Journal, 2020, 896, 45.	4.5	12
44	Submillimetre galaxies in two massive protoclusters at <i>z</i> Â= 2.24: witnessing the enrichment of extreme starbursts in the outskirts of HAE density peaks. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4893-4908.	4.4	12
45	Discovery of a Lyα-emitting Dark Cloud within the zÂâ^¼Â2.8 SMM J02399-0136 System. Astrophysical Journal, 2019, 875, 130.	4.5	11
46	A [C ii] 158 μm emitter associated with an O i absorber at the end of the reionization epoch. Natu Astronomy, 2021, 5, 1110-1117.	re 10.1	9
47	Discovery of a Protocluster Core Associated with an Enormous Lya Nebula at z = 2.3. Astrophysical Journal, 2021, 922, 236.	4.5	9
48	Deep Learning of Dark Energy Spectroscopic Instrument Mock Spectra to Find Damped Lyα Systems. Astrophysical Journal, Supplement Series, 2022, 259, 28.	7.7	8
49	First Census of Gas-phase Metallicity Gradients of Star-forming Galaxies in Overdense Environments at Cosmic Noon. Astrophysical Journal Letters, 2022, 929, L8.	8.3	8
50	LBT/LUCI SPECTROSCOPIC OBSERVATIONS OF <i>z</i> ≃7 Galaxies GALAXIES. Astrophysical Journal, 2015, 806, 108.	4.5	7
51	More than softer-when-brighter: The X-ray powerlaw spectral variability in NGC 4051. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	7
52	Constraining the Halo Mass of Damped Lyα Absorption Systems (DLAs) at zÂ=Â2–3.5 Using the Quasar-CMB Lensing Cross-correlation. Astrophysical Journal, 2020, 905, 176.	4.5	7
53	Spatially Resolved Molecular Interstellar Medium in a z = 6.6 Quasar Host Galaxy. Astrophysical Journal, 2022, 930, 27.	4.5	7
54	Improved Lyα Tomography Using Optimized Reconstruction with Constraints on Absorption (ORCA). Astrophysical Journal, 2021, 916, 20.	4.5	6

ZHENG CAI

#	Article	IF	CITATIONS
55	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). II. Optical Spectroscopic Follow-up. Astrophysical Journal, Supplement Series, 2022, 258, 21.	7.7	6
56	The PAU survey: measurements of the 4000 Ã spectral break with narrow-band photometry. Monthly Notices of the Royal Astronomical Society, 2022, 515, 146-166.	4.4	5
57	A Ringed Dwarf LINER 1 Galaxy Hosting an Intermediate-mass Black Hole with Large-scale Rotation-like Emission. Astrophysical Journal, 2017, 837, 109.	4.5	3
58	Discovery of a Damped Lyα Galaxy at z â^¼ 3 toward the Quasar SDSS J011852+040644. Astrophysical Journal, 2021, 908, 129.	4.5	3
59	L. Jiang et al. reply. Nature Astronomy, 2021, 5, 998-1000.	10.1	3
60	Deep Hubble Space Telescope Imaging on the Extended Lyα Emission of a QSO at zÂ=Â2.19 with a Damped Lyman Alpha System as a Natural Coronagraph. Astrophysical Journal Letters, 2020, 889, L12.	8.3	2