Marco Scarsella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports. Renewable Energy, 2022, 182, 647-658.	8.9	12
2	Hydrotreating of oak wood bio-crude using heterogeneous hydrogen producer over Y zeolite catalyst synthesized from rice husk. Energy Conversion and Management, 2022, 255, 115348.	9.2	6
3	Enhancing the photocatalytic activity of TiO2 and TiO2–SiO2 by coupling with graphene–gold nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 5082-5093.	2.2	13
4	Improved Quality Bio-Crude from Hydrothermal Liquefaction of Oak Wood Assisted by Zero-Valent Metals. Energy & Fuels, 2021, 35, 10023-10034.	5.1	19
5	Effect of Ni, Zn and Fe on hydrothermal liquefaction of cellulose: Impact on bio-crude yield and composition. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105225.	5.5	26
6	Biomass Gasification: The Effect of the Surface Area of Different Materials on Tar Abatement Efficiency. Energy & Fuels, 2020, 34, 1137-1144.	5.1	5
7	Unsupported Ni metal catalyst in hydrothermal liquefaction of oak wood: Effect of catalyst surface modification. Science of the Total Environment, 2020, 709, 136215.	8.0	33
8	Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy, 2020, 140, 105662.	5.7	75
9	Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption. Fuel, 2020, 276, 118041.	6.4	50
10	Fenton oxidation of primary municipal wastewater treatment plant sludge: Process modelling and reactor scale-up. Chemical Engineering Research and Design, 2020, 140, 46-59.	5.6	22
11	Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream. Applied Catalysis B: Environmental, 2019, 258, 117977.	20.2	18
12	New synthetic route for the production of mayenite support to enhance Ni resistance to coke deposition in the reforming of tar model compounds. Applied Catalysis A: General, 2019, 574, 48-59.	4.3	17
13	Enhanced bio-crude yield and quality by reductive hydrothermal liquefaction of oak wood biomass: Effect of iron addition. Journal of Analytical and Applied Pyrolysis, 2019, 139, 123-130.	5.5	56
14	Methane dry reforming on Ru perovskites, AZrRuO3: Influence of preparation method and substitution of A cation with alkaline earth metals. Journal of CO2 Utilization, 2019, 30, 222-231.	6.8	28
15	XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles. Journal of Electronic Materials, 2018, 47, 2215-2224.	2.2	65
16	Steam reforming of tar model compounds over ni supported on CeO ₂ and mayenite. Canadian Journal of Chemical Engineering, 2017, 95, 1745-1751.	1.7	17
17	Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass. Journal of Environmental Management, 2017, 197, 231-238.	7.8	66
18	Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production. Fuel, 2017, 208, 618-625.	6.4	161

MARCO SCARSELLA

#	Article	IF	CITATIONS
19	Evaluation of bitumen modification with crumb rubber obtained through a high pressure water jet (HPWJ) process. Construction and Building Materials, 2017, 151, 682-691.	7.2	9
20	Rh, Ru and Pt ternary perovskites type oxides BaZr(1-x)MexO3 for methane dry reforming. Applied Catalysis A: General, 2016, 517, 47-55.	4.3	58
21	Biocrude production by hydrothermal liquefaction of olive residue. International Journal of Sustainable Development and Planning, 2016, 11, 700-707.	0.7	5
22	Olive oil residue gasification and syngas integrated clean up system. Fuel, 2015, 158, 705-710.	6.4	13
23	Double Distribution Activation Energy Model as Suitable Tool in Explaining Biomass and Coal Pyrolysis Behavior. Energies, 2015, 8, 1730-1744.	3.1	25
24	Kinetic analysis of biomass pyrolysis using a double distributed activation energy model. Journal of Thermal Analysis and Calorimetry, 2015, 121, 1403-1410.	3.6	30
25	Biomass Gasification Plant and Syngas Clean-up System. Energy Procedia, 2015, 75, 240-245.	1.8	46
26	Tetrachloroethene recovery and hazard reduction of spent powders from dry cleaning process. Waste Management and Research, 2015, 33, 339-344.	3.9	2
27	Batch waste gasification technology: characteristics and perspectives. WIT Transactions on State-of-the-art in Science and Engineering, 2015, , 125-132.	0.0	1
28	Biomass Gasification and Tar Reforming in a Two-stage Reactor. Energy Procedia, 2014, 61, 1071-1074.	1.8	8
29	Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 2014, 61, 187-195.	5.7	85
30	The impact of chaotic advection on the microstructure of polymerâ€nodified bitumen. AICHE Journal, 2014, 60, 1870-1879.	3.6	0
31	The hydrothermal decomposition of biomass and waste to produce bio-oil. , 2014, , .		1
32	Mechanical stress tolerance of two microalgae. Process Biochemistry, 2012, 47, 1603-1611.	3.7	27
33	Energy recovery from unused and expired medicines. , 2012, , .		3
34	Waste gasification in an up-draft fixed-bed gasifier: experimental study and model validation. , 2012, , .		1
35	Oxidative Desulfurization II: Temperature Dependence of Organosulfur Compounds Oxidation. Industrial & Engineering Chemistry Research, 2011, 50, 10452-10457.	3.7	20
36	Oxidative Desulfurization I: Peroxyformic Acid Oxidation of Benzothiophene and Dibenzothiophene. Industrial & Engineering Chemistry Research, 2010, 49, 4594-4600.	3.7	45

MARCO SCARSELLA

#	Article	IF	CITATIONS
37	Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Applied Catalysis A: General, 2010, 387, 147-154.	4.3	92
38	Batch waste gasification technology: characteristics and perspectives. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	1
39	Innovative technique for the control of NOxformed in combustion processes. , 2010, , .		Ο
40	Peroxyformic Acid Formation: A Kinetic Study. Industrial & Engineering Chemistry Research, 2009, 48, 1372-1375.	3.7	76
41	Functionalized Hexagonal Mesoporous Silica as an Oxidizing Agent for the Oxidative Desulfurization of Organosulfur Compounds. Industrial & Engineering Chemistry Research, 2008, 47, 973-975.	3.7	35
42	Poultry litter valorization to energy. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	2
43	Production of Dimethyl Carbonate via Alkylene Carbonate Transesterification Catalyzed by Basic Salts. Energy & Fuels, 2006, 20, 17-20.	5.1	42
44	Heavy metal behaviour during RDF gasification. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	0
45	Oxidative Desulfurization:  Oxidation Reactivity of Sulfur Compounds in Different Organic Matrixes. Energy & Fuels, 2003, 17, 1452-1455.	5.1	121
46	The application of rheology to the evaluation of bitumen ageing. Fuel, 2000, 79, 1005-1015.	6.4	85
47	Macrostructure and Rheological Properties of Chemically Modified Residues and Bitumens. Energy & Fuels, 2000, 14, 495-502.	5.1	75
48	Dechlorination of Polychlorinated Biphenyls:Â A Kinetic Study of Removal of PCBs from Mineral Oils. Industrial & Engineering Chemistry Research, 1999, 38, 380-384.	3.7	31
49	Petroleum Heavy Ends Stability:Â Evolution of Residues Macrostructure by Aging. Energy & Fuels, 1999, 13, 739-747.	5.1	13
50	Viscosimetric and Neutron Scattering Study of Asphaltene Aggregates in Mixed Toluene/Heptane Solvents. Langmuir, 1998, 14, 1013-1020.	3.5	154
51	Colloidal Structural Evolution from Stable to Flocculated State of Asphaltene Solutions and Heavy Crudes. , 1998, , 145-201.		23
52	Colloidal Structure of Heavy Crudes and Asphaltene Soltutions. Oil & Gas Science & Technology, 1997, 52, 161-175.	0.2	65
53	AN INTEGRATED PROCESS FOR STABILIZATION AND UPGRADING OF RESIDUES AND BITUMENS. Petroleum Science and Technology, 1996, 14, 821-838.	0.2	9
54	Production of stable polypropylene-modified bitumens. Fuel, 1996, 75, 681-686.	6.4	104

#	Article	IF	CITATIONS
55	Mise en évidence de la polydispersité physico-chimique des asphaltènes. Oil & Gas Science & Technology, 1996, 51, 575-590.	0.2	18
56	A simple test method for distinguishing straight-run from thermal (visbreaker) residues or bitumens. Fuel, 1995, 74, 1537-1539.	6.4	2
57	Improving the ageing resistance of straight-run bitumens by addition of phosphorus compounds. Fuel, 1995, 74, 836-841.	6.4	58
58	Transesterification processes for vegetable oils: A simple control method of methyl ester content. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 1399-1404.	1.9	63
59	Stabilization and partial deasphaltening of thermal residues by chemical treatment. Energy & Fuels, 1994, 8, 141-146.	5.1	5
60	A rapid and convenient synthesis of tetrakis(triphenylphosphine)palladium(O) and -platinum(O) complexes by phase-transfer catalysis. Polyhedron, 1991, 10, 2475-2476.	2.2	20