
Sibei Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166110/publications.pdf Version: 2024-02-01

SIDEL YIL

#	Article	IF	CITATIONS
1	The Escherichia coli transcriptome mostly consists of independently regulated modules. Nature Communications, 2019, 10, 5536.	12.8	161
2	Revealing 29 sets of independently modulated genes in <i>Staphylococcus aureus</i> , their regulators, and role in key physiological response. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17228-17239.	7.1	60
3	Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nature Communications, 2018, 9, 3796.	12.8	59
4	Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25287-25292.	7.1	56
5	OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone Metabolic States. Molecular Biology and Evolution, 2020, 37, 660-667.	8.9	52
6	MID Max: LC–MS/MS Method for Measuring the Precursor and Product Mass Isotopomer Distributions of Metabolic Intermediates and Cofactors for Metabolic Flux Analysis Applications. Analytical Chemistry, 2016, 88, 1362-1370.	6.5	48
7	Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metabolic Engineering, 2018, 48, 233-242.	7.0	43
8	Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes. Metabolic Engineering, 2018, 48, 82-93.	7.0	38
9	Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale. Analytical Chemistry, 2016, 88, 3844-3852.	6.5	34
10	Adaptive laboratory evolution of Escherichia coli under acid stress. Microbiology (United Kingdom), 2020, 166, 141-148.	1.8	28
11	Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial Perturbation of the Transcriptome. Frontiers in Microbiology, 2018, 9, 1793.	3.5	23
12	Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in Escherichia coli pgi Knockout Evolutions. Applied and Environmental Microbiology, 2018, 84, .	3.1	22
13	Pseudogene repair driven by selection pressure applied in experimental evolution. Nature Microbiology, 2019, 4, 386-389.	13.3	21
14	Machine Learning of Bacterial Transcriptomes Reveals Responses Underlying Differential Antibiotic Susceptibility. MSphere, 2021, 6, e0044321.	2.9	12