
Marin SoljaÄić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1660643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward 3D-Printed Inverse-Designed Metaoptics. ACS Photonics, 2022, 9, 43-51.	3.2	23
2	Controlling two-photon emission from superluminal and accelerating index perturbations. Nature Physics, 2022, 18, 67-74.	6.5	13
3	A framework for scintillation in nanophotonics. Science, 2022, 375, eabm9293.	6.0	59
4	Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. Nano Letters, 2021, 21, 91-98.	4.5	6
5	Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration. Applied Physics Letters, 2021, 118, .	1.5	37
6	Control of quantum electrodynamical processes by shaping electron wavepackets. Nature Communications, 2021, 12, 1700.	5.8	34
7	Quantum surface-response of metals revealed by acoustic graphene plasmons. Nature Communications, 2021, 12, 3271.	5.8	27
8	Casimir Light in Dispersive Nanophotonics. Physical Review Letters, 2021, 127, 053603.	2.9	21
9	Submicrometer perovskite plasmonic lasers at room temperature. Science Advances, 2021, 7, .	4.7	25
10	A Brewster route to Cherenkov detectors. Nature Communications, 2021, 12, 5554.	5.8	24
11	Three-dimensional non-Abelian generalizations of the Hofstadter model: Spin-orbit-coupled butterfly trios. Physical Review B, 2021, 104, .	1.1	2
12	End-to-end nanophotonic inverse design for imaging and polarimetry. Nanophotonics, 2021, 10, 1177-1187.	2.9	48
13	Enabling Manufacturable Optical Broadband Angular-Range Selective Films. ACS Nano, 2021, 15, 19917-19923.	7.3	3
14	Non-Abelian generalizations of the Hofstadter model: spin–orbit-coupled butterfly pairs. Light: Science and Applications, 2020, 9, 177.	7.7	15
15	Extracting Interpretable Physical Parameters from Spatiotemporal Systems Using Unsupervised Learning. Physical Review X, 2020, 10, .	2.8	23
16	Monochromatic X-ray Source Based on Scattering from a Magnetic Nanoundulator. ACS Photonics, 2020, 7, 1096-1103.	3.2	4
17	Plasmon–emitter interactions at the nanoscale. Nature Communications, 2020, 11, 366.	5.8	84
18	Heuristic recurrent algorithms for photonic Ising machines. Nature Communications, 2020, 11, 249.	5.8	69

2

Marin SoljaÄić

#	Article	IF	CITATIONS
19	Observation of topologically enabled unidirectional guided resonances. Nature, 2020, 580, 467-471.	13.7	184
20	Plasmonics in argentene. Physical Review Materials, 2020, 4, .	0.9	15
21	Predictive and generative machine learning models for photonic crystals. Nanophotonics, 2020, 9, 4183-4192.	2.9	58
22	Towards integrated tunable all-silicon free-electron light sources. Nature Communications, 2019, 10, 3176.	5.8	55
23	Bound States in the Continuum in Fiber Bragg Gratings. ACS Photonics, 2019, 6, 2996-3002.	3.2	62
24	Light emission based on nanophotonic vacuum forces. Nature Physics, 2019, 15, 1284-1289.	6.5	21
25	Synthesis and observation of non-Abelian gauge fields in real space. Science, 2019, 365, 1021-1025.	6.0	65
26	Large-Scale Optical Neural Networks Based on Photoelectric Multiplication. Physical Review X, 2019, 9,	2.8	179
27	Migrating Knowledge between Physical Scenarios Based on Artificial Neural Networks. ACS Photonics, 2019, 6, 1168-1174.	3.2	85
28	Gated Orthogonal Recurrent Units: On Learning to Forget. Neural Computation, 2019, 31, 765-783.	1.3	48
29	Ultrafast Multiharmonic Plasmon Generation by Optically Dressed Electrons. Physical Review Letters, 2019, 122, 053901.	2.9	8
30	Controlling spins with surface magnon polaritons. Physical Review B, 2019, 100, .	1.1	19
31	Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 2019, 574, 501-504.	13.7	355
32	A general theoretical and experimental framework for nanoscale electromagnetism. Nature, 2019, 576, 248-252.	13.7	103
33	Practical emitters for thermophotovoltaics: a review. Journal of Photonics for Energy, 2019, 9, 1.	0.8	85
34	Photonic Recurrent Ising Sampler. , 2019, , .		2
35	Integrated Nanophotonic Ising Sampler. , 2019, , .		0
36	Topological Consequence of Merging Multiple Bound States in the Continuum. , 2019, , .		0

3

#	Article	IF	CITATIONS
37	Large-Scale Optical Neural-Network Accelerators based on Coherent Detection. , 2019, , .		Ο
38	Shaping long-lived electron wavepackets for customizable optical spectra. Optica, 2019, 6, 1089.	4.8	0
39	Multifrequency Superscattering from Subwavelength Hyperbolic Structures. ACS Photonics, 2018, 5, 1506-1511.	3.2	63
40	Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science, 2018, 359, 1009-1012.	6.0	438
41	Large Photothermal Effect in Subâ€40 nm hâ€BN Nanostructures Patterned Via Highâ€Resolution Ion Beam. Small, 2018, 14, 1800072.	5.2	12
42	Active Radiative Thermal Switching with Graphene Plasmon Resonators. ACS Nano, 2018, 12, 2474-2481.	7.3	70
43	Ultralight Angstrom-Scale Optimal Optical Reflectors. ACS Photonics, 2018, 5, 384-389.	3.2	9
44	Tunable UV-Emitters through Graphene Plasmonics. Nano Letters, 2018, 18, 308-313.	4.5	21
45	Improved Omnidirectional 2D Photonic Crystal Selective Emitter for Thermophotovoltaics. Journal of Physics: Conference Series, 2018, 1052, 012056.	0.3	1
46	Controlling the Near-Field of Metasurfaces for Free-Electron Multi-Harmonic Hard X-Ray Generation. , 2018, , .		0
47	Passive directional sub-ambient daytime radiative cooling. Nature Communications, 2018, 9, 5001.	5.8	179
48	Metasurface-based multi-harmonic free-electron light source. Light: Science and Applications, 2018, 7, 64.	7.7	40
49	Nonperturbative Quantum Electrodynamics in the Cherenkov Effect. Physical Review X, 2018, 8, .	2.8	9
50	Smith–Purcell Radiation from Low-Energy Electrons. ACS Photonics, 2018, 5, 3513-3518.	3.2	46
51	Polarization-Independent Optical Broadband Angular Selectivity. ACS Photonics, 2018, 5, 4125-4131.	3.2	26
52	Quantum plasmons with optical-range frequencies in doped few-layer graphene. Physical Review B, 2018, 97, .	1.1	22
53	Nanophotonic particle simulation and inverse design using artificial neural networks. Science Advances, 2018, 4, eaar4206.	4.7	574
54	Controlling Cherenkov angles with resonance transition radiation. Nature Physics, 2018, 14, 816-821.	6.5	88

#	Article	IF	CITATIONS
55	Quantum Hall Effect with Composites of Magnetic Flux Tubes and Charged Particles. Physical Review Letters, 2018, 120, 267201.	2.9	8
56	Photothermal Effect: Large Photothermal Effect in Subâ€40 nm hâ€BN Nanostructures Patterned Via Highâ€Resolution Ion Beam (Small 22/2018). Small, 2018, 14, 1870101.	5.2	1
57	Superlight inverse Doppler effect. Nature Physics, 2018, 14, 1001-1005.	6.5	54
58	Maximal spontaneous photon emission and energy loss from free electrons. Nature Physics, 2018, 14, 894-899.	6.5	100
59	Shaping Polaritons to Reshape Selection Rules. ACS Photonics, 2018, 5, 3064-3072.	3.2	15
60	Towards a portable mesoscale thermophotovoltaic generator. Journal of Physics: Conference Series, 2018, 1052, 012041.	0.3	5
61	Control of semiconductor emitter frequency by increasing polariton momenta. Nature Photonics, 2018, 12, 423-429.	15.6	32
62	A high-efficiency regime for gas-phase terahertz lasers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6614-6619.	3.3	24
63	Splashing transients of 2D plasmons launched by swift electrons. Science Advances, 2017, 3, e1601192.	4.7	69
64	Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion. Physical Review Letters, 2017, 118, 093002.	2.9	215
65	Low-Loss Plasmonic Dielectric Nanoresonators. Nano Letters, 2017, 17, 3238-3245.	4.5	113
66	Enabling efficient heat-to-electricity generation at the mesoscale. Energy and Environmental Science, 2017, 10, 1367-1371.	15.6	30
67	Deep learning with coherent nanophotonic circuits. Nature Photonics, 2017, 11, 441-446.	15.6	1,845
68	All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6717-6721.	3.3	144
69	Constructing "Designer Atoms―via Resonant Graphene-Induced Lamb Shifts. ACS Photonics, 2017, 4, 3098-3105.	3.2	14
70	Deep learning with coherent nanophotonic circuits. , 2017, , .		17
71	Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159.	1.6	39
72	Combined selective emitter and filter for high performance incandescent lighting. Applied Physics Letters, 2017, 111, .	1.5	7

#	Article	IF	CITATIONS
73	Nanoengineered devices for solar energy conversion. , 2017, , .		Ο
74	Limits to the Optical Response of Graphene and Two-Dimensional Materials. Nano Letters, 2017, 17, 5408-5415.	4.5	40
75	Topologically enabled optical nanomotors. Science Advances, 2017, 3, e1602738.	4.7	28
76	Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. Physical Review Letters, 2017, 118, 157402.	2.9	105
77	Infrared Topological Plasmons in Graphene. Physical Review Letters, 2017, 118, 245301.	2.9	132
78	Exotic nanophotonic states for enhanced active photonic devices. , 2017, , .		0
79	Spectral and spatial shaping of Smith-Purcell radiation. Physical Review A, 2017, 96, .	1.0	47
80	Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13607-13612.	3.3	44
81	Deep learning with coherent nanophotonic circuits. , 2017, , .		2
82	General theory of spontaneous emission near exceptional points. Optics Express, 2017, 25, 12325.	1.7	118
83	All-angle Negative Refraction of Highly Squeezed Polaritons in Graphene-boron nitride Heterostructures. , 2017, , .		1
84	Narrowband Metamaterial Absorber for Terahertz Secure Labeling. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 1120-1129.	1.2	15
85	High performance incandescent light bulb using a selective emitter and nanophotonic filters. , 2017, , .		2
86	Shaping Polaritons to Reshape Selection Rules. , 2017, , .		3
87	High-order Smith-Purcell radiation in Silicon Nanowires. , 2017, , .		3
88	Shaping UV Emission through Graphene Plasmons. , 2017, , .		0
89	Polarization state conversion through exceptional point encirclement. , 2017, , .		0
90	A Near-Unity Efficiency Source of Entangled Surface Phonon Polaritons. , 2017, , .		0

A Near-Unity Efficiency Source of Entangled Surface Phonon Polaritons. , 2017, , . 90

Marin SoljaÄ_tć

#	Article	IF	CITATIONS
91	Smith-Purcell radiation from low-energy electrons. , 2017, , .		Ο
92	Low-loss plasmonics via dielectric nanoparticles on metallic films. , 2017, , .		0
93	On-Chip Optical Neuromorphic Computing. , 2016, , .		2
94	Perfect single-sided radiation and absorption without mirrors. Optica, 2016, 3, 1079.	4.8	69
95	An integrated microcombustor and photonic crystal emitter for thermophotovoltaics. Journal of Physics: Conference Series, 2016, 773, 012108.	0.3	2
96	Topological magnetoplasmon. Nature Communications, 2016, 7, 13486.	5.8	108
97	Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. Scientific Reports, 2016, 6, 31908.	1.6	98
98	Tailoring the energy distribution and loss of 2D plasmons. New Journal of Physics, 2016, 18, 105007.	1.2	34
99	Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook. Applied Physics Reviews, 2016, 3, 011103.	5.5	59
100	Flexible yet robust. Nature Materials, 2016, 15, 494-495.	13.3	1
101	Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials. Physical Review A, 2016, 94, .	1.0	30
102	Direct imaging of isofrequency contours in photonic structures. Science Advances, 2016, 2, e1601591.	4.7	25
103	Efficient plasmonic emission by the quantum ÄŒerenkov effect from hot carriers in graphene. Nature Communications, 2016, 7, ncomms11880.	5.8	78
104	Fundamental limits to optical response in absorptive systems. Optics Express, 2016, 24, 3329.	1.7	124
105	Shrinking light to allow forbidden transitions on the atomic scale. Science, 2016, 353, 263-269.	6.0	185
106	Quantum ÄŒerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum. Physical Review X, 2016, 6, .	2.8	51
107	Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1, .	19.8	231
108	Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum. Scientific Reports, 2016, 6, 33394.	1.6	30

#	Article	IF	CITATIONS
109	Probing topological protection using a designer surface plasmon structure. Nature Communications, 2016, 7, 11619.	5.8	210
110	Bound states in the continuum. Nature Reviews Materials, 2016, 1, .	23.3	1,774
111	Grating assisted tunneling in photonic lattices: The Harper-Hofstadter Hamiltonian. , 2016, , .		0
112	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004.	1.0	85
113	Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics. Nano Letters, 2016, 16, 4110-4117.	4.5	14
114	Topological states in photonic systems. Nature Physics, 2016, 12, 626-629.	6.5	271
115	Exploiting Optical Asymmetry for Controlled Guiding of Particles with Light. ACS Photonics, 2016, 3, 197-202.	3.2	38
116	Sputtered Tantalum Photonic Crystal Coatings for High-Temperature Energy Conversion Applications. IEEE Nanotechnology Magazine, 2016, 15, 303-309.	1.1	19
117	Invisible metallic mesh. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2568-2572.	3.3	24
118	Substrate-Independent Light Confinement in Bioinspired All-Dielectric Surface Resonators. ACS Photonics, 2016, 3, 532-536.	3.2	9
119	Tailoring high-temperature radiation and the resurrection of the incandescent source. Nature Nanotechnology, 2016, 11, 320-324.	15.6	153
120	Symmetry-protected topological photonic crystal in three dimensions. Nature Physics, 2016, 12, 337-340.	6.5	245
121	Towards graphene plasmon-based free-electron infrared to X-ray sources. Nature Photonics, 2016, 10, 46-52.	15.6	112
122	A Dark-state Invisible Material. , 2016, , .		0
123	Exploiting optical asymmetry for frequency-controlled guiding of particles with light. , 2016, , .		0
124	Towards On-Chip, Tunable X-ray Sources based on Graphene Plasmons. , 2016, , .		0
125	Collapse of the Selection Rules Through 2D Plasmonics. , 2016, , .		0
126	Monoenergetic Relativistic Electron Pulses by Laser-Driven Linear Acceleration in Free Space. , 2016, , .		0

#	Article	IF	CITATIONS
127	Substrate-Independent Light Confinement in Butterfly-Inspired Photonic Crystal Slabs. , 2016, , .		0
128	2D Plasmonics for Nanosecond Generation of Entangled Plasmon Pairs. , 2016, , .		0
129	Topological photonic crystal in three dimensions. , 2016, , .		1
130	Weyl Points in Three-Dimensional Optical Lattices: Synthetic Magnetic Monopoles in Momentum Space. Physical Review Letters, 2015, 114, 225301.	2.9	148
131	Experimental Observation of Large Chern Numbers in Photonic Crystals. Physical Review Letters, 2015, 115, 253901.	2.9	228
132	Binary matrices of optimal autocorrelations as alignment marks. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 021601.	0.6	1
133	Thick sputtered tantalum coatings for high-temperature energy conversion applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, 061204.	0.9	5
134	The Harper–Hofstadter Hamiltonian and conical diffraction in photonic lattices with grating assisted tunneling. New Journal of Physics, 2015, 17, 125002.	1.2	14
135	Nanoengineered Surfaces for Thermal Energy Conversion. Journal of Physics: Conference Series, 2015, 660, 012036.	0.3	2
136	Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator. Journal of Physics: Conference Series, 2015, 660, 012069.	0.3	4
137	Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion. Journal of Physics: Conference Series, 2015, 660, 012080.	0.3	2
138	Nanophotonics in material-systems of Large Sizes. , 2015, , .		0
139	Broadband surface-wave transformation cloak. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7635-7638.	3.3	58
140	Photonic crystal enhanced silicon cell based thermophotovoltaic systems. Optics Express, 2015, 23, A157.	1.7	21
141	Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications. , 2015, , .		1
142	Structural Colors from Fano Resonances. ACS Photonics, 2015, 2, 27-32.	3.2	114
143	Experimental observation of Weyl points. Science, 2015, 349, 622-624.	6.0	833
144	Optimization of sharp and viewing-angle-independent structural color. Optics Express, 2015, 23, 9516.	1.7	11

#	Article	IF	CITATIONS
145	Weyl points in photonic-crystal superlattices. 2D Materials, 2015, 2, 034013.	2.0	32
146	Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525, 354-358.	13.7	610
147	Fano Resonance Structural Color in Patterned Dielectric Surfaces. , 2015, , .		0
148	Spawning Rings of Exceptional Points out of Dirac Cones. , 2015, , .		1
149	Large Chern number one-way waveguides. , 2015, , .		0
150	Optical manipulation of Janus nanoparticles. , 2015, , .		0
151	Generating Structural Colors from Dielectric Surface Resonances. , 2015, , .		0
152	Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Optics Express, 2014, 22, 21711.	1.7	36
153	Superlattice photonic crystal as broadband solar absorber for high temperature operation. Optics Express, 2014, 22, A1895.	1.7	39
154	Topological Nature of Optical Bound States in the Continuum. Physical Review Letters, 2014, 113, 257401.	2.9	595
155	Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. Optics Letters, 2014, 39, 2072.	1.7	63
156	Metamaterial broadband angular selectivity. Physical Review B, 2014, 90, .	1.1	45
157	Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems. Proceedings of SPIE, 2014, , .	0.8	3
158	Tantalum-tungsten alloy photonic crystals for high-temperature energy conversion systems. , 2014, , .		1
159	Omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Proceedings of SPIE, 2014, , .	0.8	2
160	Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications. Optics Express, 2014, 22, A144.	1.7	63
161	Optical Broadband Angular Selectivity. Science, 2014, 343, 1499-1501.	6.0	222
162	A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9, 126-130.	15.6	704

#	Article	IF	CITATIONS
163	Transparent displays enabled by resonant nanoparticle scattering. Nature Communications, 2014, 5, 3152.	5.8	186
164	Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Solar Energy Materials and Solar Cells, 2014, 122, 287-296.	3.0	158
165	Modeling of threshold and dynamics behavior of organic nanostructured lasers. Journal of Materials Chemistry C, 2014, 2, 1463.	2.7	23
166	Ultrafast dynamic control. Nature Materials, 2014, 13, 920-921.	13.3	3
167	Topological photonics. Nature Photonics, 2014, 8, 821-829.	15.6	2,492
168	Effects of screening on the optical absorption in graphene and in metallic monolayers. Physical Review B, 2014, 89, .	1.1	12
169	Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals. Advanced Materials, 2014, 26, 8041-8045.	11.1	120
170	Theoretical Criteria for Scattering Dark States in Nanostructured Particles. Nano Letters, 2014, 14, 2783-2788.	4.5	83
171	Metallic Photonic Crystal Absorberâ€Emitter for Efficient Spectral Control in Highâ€Temperature Solar Thermophotovoltaics. Advanced Energy Materials, 2014, 4, 1400334.	10.2	230
172	Multimode One-Way Waveguides of Large Chern Numbers. Physical Review Letters, 2014, 113, 113904.	2.9	228
173	Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs. Optics Express, 2014, 22, 3724.	1.7	6
174	2D Photonic-crystals for high spectral conversion efficiency in solar thermophotovoltaics. , 2014, , .		2
175	Novel phenomena in nano-photonic systems of macroscopic sizes. , 2014, , .		0
176	Optical Broadband Angular Selectivity. , 2014, , .		1
177	Metamaterial Broadband Angular Selectivity. , 2014, , .		0
178	Enabling Enhanced Emission and Low Threshold Lasing of Organic Molecules Using Special Fano Resonances of Macroscopic Photonic Crystals. , 2014, , .		1
179	Observation of trapped light within the radiation continuum. Nature, 2013, 499, 188-191.	13.7	950

180 Artificial faraday rotation using active metamaterials. , 2013, , .

#	Article	IF	CITATIONS
181	Damping of plasmons in graphene. Nature Photonics, 2013, 7, 346-348.	15.6	24
182	Weyl points and line nodes in gyroid photonic crystals. Nature Photonics, 2013, 7, 294-299.	15.6	560
183	Plasmons in Graphene: Fundamental Properties and Potential Applications. Proceedings of the IEEE, 2013, 101, 1689-1704.	16.4	210
184	Bloch surface eigenstates within the radiation continuum. Light: Science and Applications, 2013, 2, e84-e84.	7.7	163
185	Layer-by-layer self-assembly of plexcitonic nanoparticles. Optics Express, 2013, 21, 19103.	1.7	20
186	Super-collimation with high frequency sensitivity in 2D photonic crystals induced by saddle-type van Hove singularities. Optics Express, 2013, 21, 30140.	1.7	23
187	Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Optics Express, 2013, 21, 31402.	1.7	108
188	Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	71
189	Low emissivity high-temperature tantalum thin film coatings for silicon devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	10
190	Evolution of sputtered tungsten coatings at high temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	24
191	Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13711-13716.	3.3	110
192	An all-metallic microburner for a millimeter-scale thermophotovoltaic generator. Journal of Physics: Conference Series, 2013, 476, 012017.	0.3	8
193	Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5309-5314.	3.3	152
194	Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems. Optics Express, 2013, 21, A1035.	1.7	59
195	High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Optics Express, 2013, 21, 11482.	1.7	146
196	Novel phenomena in macroscopic photonic crystals. Proceedings of SPIE, 2013, , .	0.8	0
197	Weyl points and line nodes in 3D photonic crystals. , 2013, , .		0
198	Enabling single-mode behavior over large areas with photonic Dirac cones. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9761-9765.	3.3	53

#	Article	IF	CITATIONS
199	Three-dimensional photonic crystals by large-area membrane stacking. Optics Letters, 2012, 37, 4726.	1.7	10
200	Optimization of broadband optical response of multilayer nanospheres. Optics Express, 2012, 20, 18494.	1.7	27
201	Flat photonic surface bands pinned between Dirac points. Optics Letters, 2012, 37, 5262.	1.7	13
202	Observation and Differentiation of Unique High- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs. Physical Review Letters, 2012, 109, 067401.</mml:math 	2.9	286
203	Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Optics Express, 2012, 20, A366.	1.7	196
204	Enabling high-temperature nanophotonics for energy applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2280-2285.	3.3	204
205	Numerical Study of a Solar Thermophotovoltaic Energy Converter With High Performance 2D Photonic Crystals. , 2012, , .		0
206	Fractal optics and beyond. Nature Photonics, 2012, 6, 209-210.	15.6	40
207	Electromagnetic modes localized at the edges of a three-dimensional photonic crystal. , 2012, , .		0
208	Larger-area single-mode photonic crystal surface-emitting lasers enabled by the accidental Dirac-point. , 2012, , .		0
209	Design of three-dimensional photonic crystals for large-area membrane stacking. , 2012, , .		0
210	Recent developments in high-temperature photonic crystals for energy conversion. Energy and Environmental Science, 2012, 5, 8815.	15.6	132
211	Near-field thermal radiation transfer controlled by plasmons in graphene. Physical Review B, 2012, 85, .	1.1	194
212	Gyrotropic response in the absence of a bias field. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13194-13197.	3.3	83
213	Waveguiding at the Edge of a Three-Dimensional Photonic Crystal. Physical Review Letters, 2012, 108, 243901.	2.9	36
214	Unconventional plasmon-phonon coupling in graphene. Physical Review B, 2011, 83, .	1.1	45
215	Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials. Physical Review Letters, 2011, 107, 114302.	2.9	148
216	Design and global optimization of high-efficiency solar thermal systems with tungsten cermets. Optics Express, 2011, 19, A245.	1.7	56

#	Article	IF	CITATIONS
217	Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances. Optics Express, 2011, 19, 1539.	1.7	88
218	Spatio-temporal theory of lasing action in optically-pumped rotationally excited molecular gases. Optics Express, 2011, 19, 7513.	1.7	11
219	Transverse electric plasmons in bilayer graphene. Optics Express, 2011, 19, 11236.	1.7	75
220	Abrupt coupling between strongly dissimilar waveguides with 100% transmission. Optics Express, 2011, 19, 13714.	1.7	3
221	Broadband circulators based on directional coupling of one-way waveguides. Optics Express, 2011, 19, 22248.	1.7	52
222	Tailoring photonic metamaterial resonances for thermal radiation. Nanoscale Research Letters, 2011, 6, 549.	3.1	44
223	Angular photonic band gap. Physical Review A, 2011, 83, .	1.0	29
224	Degenerate four-wave mixing in triply resonant Kerr cavities. Physical Review A, 2011, 83, .	1.0	27
225	Optical phenomena and dynamics in organic microcavity laser. , 2011, , .		0
226	Physics and Applications of One-Way Magneto-Optical Photonic Crystals. , 2010, , .		0
227	Design and global optimization of high-efficiency thermophotovoltaic systems. Optics Express, 2010, 18, A314.	1.7	226
228	Simultaneous mid-range power transfer to multiple devices. Applied Physics Letters, 2010, 96, .	1.5	325
229	Plasmonic-Dielectric Systems for High-Order Dispersionless Slow or Stopped Subwavelength Light. Physical Review Letters, 2009, 103, 043906.	2.9	31
230	Nonlinear harmonic generation and devices in doubly resonant Kerr cavities. Physical Review A, 2009, 79, .	1.0	32
231	Efficient weakly-radiative wireless energy transfer: An EIT-like approach. Annals of Physics, 2009, 324, 1783-1795.	1.0	117
232	Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461, 772-775.	13.7	2,206
233	Plasmonics in graphene at infrared frequencies. Physical Review B, 2009, 80, .	1.1	1,819
234	Broadband super-collimation in a hybrid photonic crystal structure. Optics Express, 2009, 17, 8109.	1.7	44

#	Article	IF	CITATIONS
235	Tailoring and cancelling dispersion of slow or stopped and subwavelength surface-plasmonodielectric-polaritonic light. Proceedings of SPIE, 2009, , .	0.8	0
236	Efficient wireless non-radiative mid-range energy transfer. Annals of Physics, 2008, 323, 34-48.	1.0	1,185
237	Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Physical Review Letters, 2008, 100, 013905.	2.9	1,058
238	Zero-group-velocity modes in longitudinally uniform waveguides. Applied Physics Letters, 2008, 93, 241111.	1.5	7
239	Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers. Optics Letters, 2008, 33, 1690.	1.7	34
240	Nonlinear photonic crystals near the supercollimation point. Optics Letters, 2008, 33, 1762.	1.7	8
241	Purcell effect in nonlinear photonic structures: a coupled mode theory analysis. Optics Express, 2008, 16, 12523.	1.7	17
242	Effective theory of quadratic degeneracies. Physical Review B, 2008, 77, .	1.1	108
243	A Unified Picture of Laser Physics. Science, 2008, 320, 623-624.	6.0	2
244	Supercollimation in photonic crystals composed of silicon rods. Applied Physics Letters, 2008, 93, 131111.	1.5	19
245	Dark-state polaritons in single- and double- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Î></mml:mi> /mml:math>media. Physical Review A, 2008, 77, .</mml:math 	1.0	20
246	Efficient mid-IR spectral generation via 4 th order cascaded-Raman amplification. , 2008, , .		0
247	Supercollimation in photonic crystals composed of nano-scale silicon rods. , 2008, , .		0
248	Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals. Physical Review B, 2007, 75, .	1.1	9
249	The nonlinear effect from the interplay between the nonlinearity and the supercollimation of photonic crystal. Applied Physics Letters, 2007, 91, 031105.	1.5	15
250	Tailoring Optical Nonlinearities via the Purcell Effect. Physical Review Letters, 2007, 99, 053601.	2.9	49
251	Maxwell equation simulations of coherent optical photon emission from shock waves in crystals. Physical Review E, 2007, 75, 056611.	0.8	8
252	Analysis of linear and nonlinear photonic devices using eigenmode expansion. , 2007, , .		0

#	Article	IF	CITATIONS
253	?^(2) and ?^(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Optics Express, 2007, 15, 7303.	1.7	134
254	Enhanced nonlinear optics in photonic-crystal microcavities. Optics Express, 2007, 15, 16161.	1.7	155
255	Quantum theory of a resonant photonic crystal. Physical Review B, 2007, 75, .	1.1	13
256	Coupled-mode theory for general free-space resonant scattering of waves. Physical Review A, 2007, 75,	1.0	122
257	Terahertz radiation from shocked materials. Materials Today, 2007, 10, 44-50.	8.3	4
258	Photonic crystals go dynamic. Nature Materials, 2007, 6, 799-800.	13.3	9
259	Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nature Photonics, 2007, 1, 658-665.	15.6	139
260	Extraordinary optical transmission through subwavelength holes in a polaritonic silicon dioxide film. Applied Physics Letters, 2007, 90, 181921.	1.5	31
261	Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science, 2007, 317, 83-86.	6.0	4,634
262	Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs. Physical Review E, 2006, 74, 016609.	0.8	68
263	Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74, 036615.	0.8	42
264	Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Physical Review A, 2006, 74, .	1.0	126
265	Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14, 8785.	1.7	110
266	Switching through symmetry breaking in coupled nonlinear micro-cavities. Optics Express, 2006, 14, 10678.	1.7	62
267	Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nature Materials, 2006, 5, 93-96.	13.3	222
268	Coherent Optical Photons from Shock Waves in Crystals. Physical Review Letters, 2006, 96, 013904.	2.9	15
269	Ultra-flat bands in two-dimensional photonic crystals. , 2006, 6128, 27.		1
270	Prediction of Coherent Optical Radiation from Shock Waves in Polarizable Crystals. AIP Conference Proceedings, 2006, , .	0.3	0

Marin SoljaÄić

#	ARTICLE	IF	CITATIONS
271	Emulating one-dimensional resonantQ-matching behavior in a two-dimensional system via Fano resonances. Physical Review A, 2006, 74, .	1.0	40
272	Prediction of Coherent Optical Photons from Shock Waves in Crystals. , 2006, , .		0
273	Reversed and Anomalous Doppler Effects in Photonic Crystals and other Time-dependent Periodic Media. Journal of Computer-Aided Materials Design, 2005, 12, 1-15.	0.7	7
274	Ultralow-power all-optical switching. Applied Physics Letters, 2005, 86, 171101.	1.5	64
275	Reversed and anomalous Doppler shifts in periodic media. , 2005, 5733, 230.		0
276	Enhancement of microcavity lifetimes using highly dispersive materials. Physical Review E, 2005, 71, 026602.	0.8	45
277	Surface-Plasmon-Assisted Guiding of Broadband Slow and Subwavelength Light in Air. Physical Review Letters, 2005, 95, 063901.	2.9	189
278	The Color of Shock Waves in Photonic Crystals. AIP Conference Proceedings, 2004, , .	0.3	1
279	Effect of a photonic band gap on scattering from waveguide disorder. Applied Physics Letters, 2004, 84, 3639-3641.	1.5	67
280	Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications. Journal of Applied Physics, 2004, 96, 6931-6933.	1.1	123
281	Electromagnetically induced transparency in microcavities. , 2004, 5554, 174.		2
282	Comment on "Observation of the Inverse Doppler Effect". Science, 2004, 305, 778b-778b.	6.0	12
283	Enhancement of nonlinear effects using photonic crystals. Nature Materials, 2004, 3, 211-219.	13.3	718
284	Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 397.	0.9	46
285	Optical bistability and cutoff solitons in photonic bandgap fibers. Optics Express, 2004, 12, 1518.	1.7	14
286	Superprism effect based on phase velocities. Optics Letters, 2004, 29, 745.	1.7	39
287	Cutoff solitons in axially uniform systems. Optics Letters, 2004, 29, 851.	1.7	18

288 The color of shock waves in photonic crystals. , 2004, , .

0

Marin SoljaÄić

#	Article	IF	CITATIONS
289	Novel optical phenomena with photonic crystals. , 2004, , .		5
290	Optical bistability in axially modulated OmniGuide fibers. Optics Letters, 2003, 28, 516.	1.7	30
291	Nonlinear photonic crystal microdevices for optical integration. Optics Letters, 2003, 28, 637.	1.7	274
292	White-light solitons. Optics Letters, 2003, 28, 1239.	1.7	53
293	All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Optics Letters, 2003, 28, 2506.	1.7	328
294	High-contrast all-optical bistable switching in photonic crystal microcavities. Applied Physics Letters, 2003, 83, 2739-2741.	1.5	346
295	Color of Shock Waves in Photonic Crystals. Physical Review Letters, 2003, 90, 203904.	2.9	99
296	Analysis of mode structure in hollow dielectric waveguide fibers. Physical Review E, 2003, 67, 046608.	0.8	75
297	Cavity pattern formation with incoherent light. Physical Review E, 2003, 68, 016616.	0.8	16
298	All-optical switching using optical bistability in nonlinear photonic crystals. , 2003, , .		16
299	Collisions of Two Solitons in an Arbitrary Number of Coupled Nonlinear SchrĶdinger Equations. Physical Review Letters, 2003, 90, 254102.	2.9	49
300	Reversed Doppler Effect in Photonic Crystals. Physical Review Letters, 2003, 91, 133901.	2.9	141
301	Modeling of nanophotonics. , 2003, , .		0
302	Pattern Formation in a Cavity Longer than the Coherence Length of the Light in It. Physical Review Letters, 2002, 89, 183902.	2.9	25
303	Propagation of incoherent "whiteâ€light and modulation instability in noninstantaneous nonlinear media. Physical Review E, 2002, 66, 035601.	0.8	51
304	Pattern formation via symmetry breaking in nonlinear weakly correlated systems. Physical Review E, 2002, 65, 036620.	0.8	21
305	<title>Breaking the glass ceiling: hollow OmniGuide fibers</title> . , 2002, 4655, 1.		3
306	Enhancement of phase sensitivity by exploring slow light in photonic crystals. , 2002, 4870, 289.		2

Enhancement of phase sensitivity by exploring slow light in photonic crystals. , 2002, 4870, 289. 306

Marin SoljaÄ_tć

#	Article	lF	CITATIONS
307	Optimal bistable switching in nonlinear photonic crystals. Physical Review E, 2002, 66, 055601.	0.8	316
308	(1+1)-Dimensional modulation instability of spatially incoherent light. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 502.	0.9	48
309	Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2052.	0.9	437
310	Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2867.	0.9	23
311	Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express, 2001, 9, 748.	1.7	361
312	Interactions between two-dimensional composite vector solitons carrying topological charges. Physical Review E, 2001, 63, 066608.	0.8	36
313	Delayed-Action Interaction and Spin-Orbit Coupling between Solitons. Physical Review Letters, 2001, 86, 799-802.	2.9	21
314	Transverse instability of incoherent solitons in Kerr media. Physical Review E, 2001, 65, 015601.	0.8	17
315	Eliminating the Transverse Instabilities of Kerr Solitons. Physical Review Letters, 2000, 85, 4888-4891.	2.9	76
316	Self-similarity and fractals in soliton-supporting systems. Physical Review E, 2000, 61, R1048-R1051.	0.8	72
317	Cantor Set Fractals from Solitons. Physical Review Letters, 2000, 84, 1902-1905.	2.9	50
318	Bright Spatial Solitons on a Partially Incoherent Background. Physical Review Letters, 2000, 84, 2374-2377.	2.9	65
319	Self-trapping of "necklace-ring―beams in self-focusing Kerr media. Physical Review E, 2000, 62, 2810-2820.	0.8	64
320	Modulation Instability of Incoherent Beams in Noninstantaneous Nonlinear Media. Physical Review Letters, 2000, 84, 467-470.	2.9	236
321	Composite Multihump Vector Solitons Carrying Topological Charge. Physical Review Letters, 2000, 84, 1164-1167.	2.9	133
322	Self-trapping of electromagnetic beams in vacuum supported by QED nonlinear effects. Physical Review A, 2000, 62, .	1.0	45
323	Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams. Science, 2000, 290, 495-498.	6.0	302
324	Self-Trapping of "Necklace―Beams in Self-Focusing Kerr Media. Physical Review Letters, 1998, 81, 4851-4854.	2.9	164

#	Article	IF	CITATIONS
325	Supernatural inflation: inflation from supersymmetry with no (very) small parameters. Nuclear Physics B, 1996, 472, 377-405.	0.9	189